TEOChat / videollava /serve /teochat_demo.py
jirvin16's picture
Initial commit
134cb11
import os
import re
import io
import cv2
import json
import torch
import random
import argparse
import tempfile
import numpy as np
import gradio as gr
import plotly.graph_objects as go
import torchvision.transforms as T
import torch.backends.cudnn as cudnn
from PIL import Image
from gradio import Brush
from gradio.themes.utils import sizes
from pathlib import Path
from collections import defaultdict
# Add the grandparent directory to the path
# This is necessary to import the videollava package
import sys
sys.path.append(str(Path(__file__).resolve().parents[2]))
from videollava.utils import disable_torch_init
from videollava.model.builder import load_pretrained_model
from videollava.eval.infer_utils import run_inference_single
from videollava.constants import DEFAULT_VIDEO_TOKEN
from videollava.conversation import conv_templates, Conversation, conv_templates
from videollava.mm_utils import get_model_name_from_path
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--model-path", type=str, default="jirvin16/TEOChat")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--conv-mode", type=str, default="v1")
parser.add_argument("--max-new-tokens", type=int, default=300)
parser.add_argument("--quantization", type=str, default="8-bit")
parser.add_argument("--image-aspect-ratio", type=str, default='pad')
parser.add_argument('--cache-dir', type=str, default=None)
parser.add_argument('--dont-use-fast-api', action='store_true')
parser.add_argument('--planet-api-key', type=str, default=None)
parser.add_argument('--port', type=int, default=7860)
parser.add_argument('--server_name', type=str, default="0.0.0.0")
args = parser.parse_args()
return args
def get_bbox_in_polyline_format(x1, y1, x2, y2):
return np.array([
[x1, y1],
[x2, y1],
[x2, y2],
[x1, y2]
])
def extract_box_sequences(string):
# Split the input string into segments where sequences of lists are separated by punctuation other than commas or periods
segments = re.split(r'[^\[\],\d\s]+', string)
# Pattern to find substrings of the form [a,b,c,d] where a, b, c, d are integers
pattern = r'\[\s*(-?\d+)\s*,\s*(-?\d+)\s*,\s*(-?\d+)\s*,\s*(-?\d+)\s*\]'
result = []
for segment in segments:
# Find all matches of the pattern in each segment
matches = re.findall(pattern, segment)
if matches:
# Convert each tuple of strings into a list of integers and collect them into a list
sublist = [list(map(int, match)) for match in matches]
result.append(sublist)
return result
def is_overlapping(rect1, rect2):
x1, y1, x2, y2 = rect1
x3, y3, x4, y4 = rect2
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
def computeIoU(bbox1, bbox2):
x1, y1, x2, y2 = bbox1
x3, y3, x4, y4 = bbox2
intersection_x1 = max(x1, x3)
intersection_y1 = max(y1, y3)
intersection_x2 = min(x2, x4)
intersection_y2 = min(y2, y4)
intersection_area = max(0, intersection_x2 - intersection_x1 + 1) * max(0, intersection_y2 - intersection_y1 + 1)
bbox1_area = (x2 - x1 + 1) * (y2 - y1 + 1)
bbox2_area = (x4 - x3 + 1) * (y4 - y3 + 1)
union_area = bbox1_area + bbox2_area - intersection_area
iou = intersection_area / union_area
return iou
def mask2bbox(mask):
if mask is None:
return ''
mask = Image.open(mask)
mask = mask.resize([100, 100], resample=Image.NEAREST)
mask = np.array(mask)[:, :, 0]
rows = np.any(mask, axis=1)
cols = np.any(mask, axis=0)
if rows.sum():
x1, x2 = np.where(cols)[0][[0, -1]]
y1, y2 = np.where(rows)[0][[0, -1]]
bbox = '[{}, {}, {}, {}]'.format(x1, y1, x2, y2)
else:
bbox = ''
return bbox
def visualize_all_bbox_together(image_path, generation, bbox_presence):
# Resize the image to a fixed width and a height that preserves the aspect ratio
# For visualization in gradio
image = Image.open(image_path).convert("RGB")
image_width, image_height = image.size
image = image.resize([500, int(500 / image_width * image_height)])
image_width, image_height = image.size
sequence_list = extract_box_sequences(generation)
if sequence_list: # it is grounding or detection
mode = 'all'
entities = defaultdict(list)
i = 0
j = 0
for sequence in sequence_list:
try:
# TODO: Get object name from the string
# obj, sequence = sequence.split('</p>')
obj = 'TODO'
except ValueError:
print('wrong string: ', sequence)
continue
if "][" in sequence:
sequence=sequence.replace("][","], [")
flag = False
for bbox in sequence:
if len(bbox) == 4:
x1, y1, x2, y2 = int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])
x1 = x1 / bounding_box_size * image_width
y1 = y1 / bounding_box_size * image_height
x2 = x2 / bounding_box_size * image_width
y2 = y2 / bounding_box_size * image_height
entities[obj].append([x1, y1, x2, y2])
j += 1
flag = True
if flag:
i += 1
else:
bbox = re.findall(r'-?\d+', generation)
if len(bbox) == 4: # it is refer
mode = 'single'
entities = list()
x1, y1, x2, y2 = int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])
x1 = x1 / bounding_box_size * image_width
y1 = y1 / bounding_box_size * image_height
x2 = x2 / bounding_box_size * image_width
y2 = y2 / bounding_box_size * image_height
entities.append([x1, y1, x2, y2])
else:
# don't detect any valid bbox to visualize
return image, ''
if len(entities) == 0:
return image, ''
if isinstance(image, Image.Image):
image_h = image.height
image_w = image.width
image = np.array(image)
elif isinstance(image, str):
if os.path.exists(image):
pil_img = Image.open(image).convert("RGB")
image = np.array(pil_img)[:, :, [2, 1, 0]]
image_h = pil_img.height
image_w = pil_img.width
else:
raise ValueError(f"invaild image path, {image}")
elif isinstance(image, torch.Tensor):
image_tensor = image.cpu()
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
pil_img = T.ToPILImage()(image_tensor)
image_h = pil_img.height
image_w = pil_img.width
image = np.array(pil_img)[:, :, [2, 1, 0]]
else:
raise ValueError(f"invalid image format, {type(image)} for {image}")
new_image = image.copy()
previous_bboxes = []
# size of text
text_size = 0.4
# thickness of text
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
box_line = 2
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
base_height = int(text_height * 0.675)
text_offset_original = text_height - base_height
text_spaces = 2
# used_colors = colors # random.sample(colors, k=num_bboxes)
if bbox_presence == 'input':
color = (255, 0, 0)
color_string = 'red'
elif bbox_presence == 'output':
color = (0, 255, 0)
color_string = 'green'
else:
# Doesn't matter, should never be used
color = None
# color_id = -1
for entity_idx, entity_name in enumerate(entities):
if mode == 'single' or mode == 'identify':
bboxes = entity_name
bboxes = [bboxes]
else:
bboxes = entities[entity_name]
# color_id += 1
for (x1_norm, y1_norm, x2_norm, y2_norm) in bboxes:
skip_flag = False
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm), int(y1_norm), int(x2_norm), int(y2_norm)
# color = used_colors[entity_idx % len(used_colors)] # tuple(np.random.randint(0, 255, size=3).tolist())
bbox = get_bbox_in_polyline_format(orig_x1, orig_y1, orig_x2, orig_y2)
new_image=cv2.polylines(new_image, [bbox.astype(np.int32)], isClosed=True,thickness=2, color=color)
# TODO: Add this after delimeter
if False: # mode == 'all':
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
x1 = orig_x1 - l_o
y1 = orig_y1 - l_o
if y1 < text_height + text_offset_original + 2 * text_spaces:
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
x1 = orig_x1 + r_o
# add text background
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size,
text_line)
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (
text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
for prev_bbox in previous_bboxes:
if computeIoU((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']) > 0.95 and \
prev_bbox['phrase'] == entity_name:
skip_flag = True
break
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']):
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
y1 += (text_height + text_offset_original + 2 * text_spaces)
if text_bg_y2 >= image_h:
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
text_bg_y2 = image_h
y1 = image_h
break
if not skip_flag:
alpha = 0.5
for i in range(text_bg_y1, text_bg_y2):
for j in range(text_bg_x1, text_bg_x2):
if i < image_h and j < image_w:
if j < text_bg_x1 + 1.35 * c_width:
# original color
bg_color = color
else:
# white
bg_color = [255, 255, 255]
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(
np.uint8)
cv2.putText(
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces),
cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
)
previous_bboxes.append(
{'bbox': (text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), 'phrase': entity_name})
# TODO: Add this after delimeter
if False: # mode == 'all':
def color_iterator(colors):
while True:
for color in colors:
yield color
color_gen = color_iterator(colors)
# Add colors to phrases and remove <p></p>
def colored_phrases(match):
phrase = match.group(1)
color = next(color_gen)
return f'<span style="color:rgb{color}">{phrase}</span>'
generation = re.sub(r'{<\d+><\d+><\d+><\d+>}|<delim>', '', generation)
generation_colored = re.sub(r'<p>(.*?)</p>', colored_phrases, generation)
else:
# For now, just color the bounding box text the same color as the input
def color_bounding_boxes(text):
# Regex pattern to find patterns of the form [xmin, xmax, ymin, ymax]
pattern = r'\[\s*\d+\s*,\s*\d+\s*,\s*\d+\s*,\s*\d+\s*\]'
# Function to apply HTML styling
def replace_with_color(match):
return f'<span style="color:{color_string};">{match.group()}</span>'
# Replace all matching patterns with colored version
colored_text = re.sub(pattern, replace_with_color, text)
return colored_text
if bbox_presence is not None:
# Detect the bounding boxes and replace them with colored versions
generation_colored = color_bounding_boxes(generation)
else:
generation_colored = generation
pil_image = Image.fromarray(new_image)
return pil_image, generation_colored
def regenerate(state, state_):
state.messages.pop(-1)
state_.messages.pop(-1)
if len(state.messages) > 0:
return state, state_, state.to_gradio_chatbot(), False
return (state, state_, state.to_gradio_chatbot(), True)
def clear_history(state, state_):
state = conv_templates[CONV_MODE].copy()
state_ = conv_templates[CONV_MODE].copy()
return (
gr.update(value=None, interactive=True),
gr.update(value=None, interactive=True),
gr.update(value=None, interactive=True),
True,
state,
state_,
state.to_gradio_chatbot()
)
def single_example_trigger(image1, textbox):
return gr.update(value=None, interactive=True), *example_trigger()
def temporal_example_trigger(image1, image_list, textbox):
return image_list, *example_trigger()
def example_trigger():
state = conv_templates[CONV_MODE].copy()
state_ = conv_templates[CONV_MODE].copy()
return True, state, state_, state.to_gradio_chatbot()
def generate(image1, image_list, textbox_in, first_run, state, state_):
flag = 1
if not textbox_in:
return "Please enter an instruction."
mask = None
if image1 is None:
image1 = []
elif isinstance(image1, str):
image1 = [image1]
elif isinstance(image1, dict):
mask = image1['layers'][0]
image1 = [image1['background']]
if image_list is None:
image_list = []
all_image_paths = [path for path in image1 + image_list if os.path.exists(path)]
if type(state) is not Conversation:
state = conv_templates[CONV_MODE].copy()
state_ = conv_templates[CONV_MODE].copy()
first_run = False if len(state.messages) > 0 else True
text_en_in = textbox_in.replace("picture", "image")
# Check if user provided bbox in the text input
integers = re.findall(r'-?\d+', text_en_in)
bbox_in_input = False
if len(integers) != 4:
# No bbox provided in input text. Try to use the bbox from the image editor
bbox = mask2bbox(mask)
if bbox:
bbox_in_input = True
text_en_in += f" {bbox}"
else:
bbox_in_input = True
text_en_out, state_ = handler.generate(all_image_paths, text_en_in, first_run=first_run, state=state_)
state_.messages[-1] = (state_.roles[1], text_en_out)
text_en_out = text_en_out.split('#')[0]
# Check if bbox is in the text output
integers = re.findall(r'-?\d+', text_en_out)
bbox_in_output = False
if len(integers) == 4:
bbox_in_output = True
show_images = ""
for idx, image_path in enumerate(all_image_paths, start=1):
if bbox_in_input and bbox_in_output:
# If both are present, only display the output bbox in the image
bbox_presence = "output"
image, text_en_out = visualize_all_bbox_together(image_path, text_en_out, bbox_presence=bbox_presence)
elif bbox_in_input and not bbox_in_output:
bbox_presence = "input"
image, text_en_in = visualize_all_bbox_together(image_path, text_en_in, bbox_presence=bbox_presence)
elif bbox_in_output:
bbox_presence = "output"
image, text_en_out = visualize_all_bbox_together(image_path, text_en_out, bbox_presence=bbox_presence)
else:
# No bboxes, pass in output text
bbox_presence = None
image, _ = visualize_all_bbox_together(image_path, text_en_out, bbox_presence=bbox_presence)
if bbox_presence is not None or first_run:
new_image_path = os.path.join(os.path.dirname(image_path), next(tempfile._get_candidate_names()) + '.png')
image.save(new_image_path)
show_images += f'<div style="margin-bottom: 20px;"><strong>Image {idx}:</strong><br><img src="./file={new_image_path}" style="width: 250px; max-height: 400px;"></div>'
textbox_out = text_en_out
textbox_in = text_en_in
if flag:
state.append_message(state.roles[0], textbox_in + "\n" + show_images)
state.append_message(state.roles[1], textbox_out)
return (
state,
state_,
state.to_gradio_chatbot(),
False,
gr.update(value=None, interactive=True)
)
class Chat:
def __init__(self, model_path, conv_mode, model_base=None, quantization=None, device='cuda', cache_dir=None):
disable_torch_init()
model_name = get_model_name_from_path(model_path)
# Add cache_dir attribute to config.json at model_path
if cache_dir is not None and cache_dir != "./cache_dir":
# Model path is a full path
config_path = os.path.join(model_path, 'config.json')
if not os.path.exists(config_path):
# Model path is relative to cache dir
config_path = os.path.join(cache_dir, model_path, 'config.json')
if not os.path.exists(config_path):
# Model path is a hf repo
user, repo_id = model_path.split('/')
snapshot_dir = os.path.join(cache_dir, f"models--{user}--{repo_id}", 'snapshots')
# Get most recent snapshot
snapshots = os.listdir(snapshot_dir)
snapshot = max(snapshots, key=lambda x: os.path.getctime(os.path.join(snapshot_dir, x)))
snapshot_dir = os.path.join(snapshot_dir, snapshot)
config_path = os.path.join(snapshot_dir, 'config.json')
# Download the model
from huggingface_hub import snapshot_download
snapshot_download(repo_id=model_path, cache_dir=cache_dir, use_auth_token=os.getenv('HF_AUTH_TOKEN'))
with open(config_path, 'r') as f:
config = json.load(f)
config['cache_dir'] = cache_dir
with open(config_path, 'w') as f:
json.dump(config, f)
load_8bit = quantization == "8-bit"
load_4bit = quantization == "4-bit"
self.tokenizer, self.model, processor, context_len = load_pretrained_model(model_path, model_base, model_name,
load_8bit, load_4bit,
device=device, cache_dir=cache_dir,
use_auth_token=os.getenv('HF_AUTH_TOKEN'))
self.image_processor = processor['image']
self.conv_mode = conv_mode
self.conv = conv_templates[conv_mode].copy()
self.device = self.model.device
def get_prompt(self, qs, state):
state.append_message(state.roles[0], qs)
state.append_message(state.roles[1], None)
return state
@torch.inference_mode()
def generate(self, image_paths: list, prompt: str, first_run: bool, state):
if first_run:
if len(image_paths) == 1:
prefix = f"This is a satellite image: {DEFAULT_VIDEO_TOKEN}\n"
else:
prefix = f"This a sequence of satellite images capturing the same location at different times in chronological order: {DEFAULT_VIDEO_TOKEN}\n"
prompt = prefix + prompt
state = self.get_prompt(prompt, state)
prompt = state.get_prompt()
prompt, outputs = run_inference_single(
self.model,
self.image_processor,
self.tokenizer,
self.conv_mode,
inp=None,
image_paths=image_paths,
metadata=None, # Assume no metatdata
prompt_strategy="interleave",
chronological_prefix=True,
prompt=prompt,
print_prompt=True,
return_prompt=True,
)
print("prompt", prompt)
outputs = outputs.strip()
print('response', outputs)
return outputs, state
def center_map(lat, lon, zoom, basemap):
fig = go.Figure(go.Scattermapbox())
basemap2source = {
"Google Maps": "https://mt0.google.com/vt/lyrs=s&hl=en&x={x}&y={y}&z={z}",
"PlanetScope Q2 2024": "https://tiles.planet.com/basemaps/v1/planet-tiles/global_quarterly_2024q2_mosaic/gmap/{z}/{x}/{y}.png?api_key=",
"PlanetScope Q1 2024": "https://tiles.planet.com/basemaps/v1/planet-tiles/global_quarterly_2024q1_mosaic/gmap/{z}/{x}/{y}.png?api_key=",
"PlanetScope Q4 2023": "https://tiles.planet.com/basemaps/v1/planet-tiles/global_quarterly_2023q4_mosaic/gmap/{z}/{x}/{y}.png?api_key=",
"PlanetScope Q3 2023": "https://tiles.planet.com/basemaps/v1/planet-tiles/global_quarterly_2023q3_mosaic/gmap/{z}/{x}/{y}.png?api_key=",
"United States Geological Survey": "https://basemap.nationalmap.gov/arcgis/rest/services/USGSImageryOnly/MapServer/tile/{z}/{y}/{x}"
}
source = basemap2source[basemap]
if "Planet" in basemap and PLANET_API_KEY is None:
raise ValueError("Please provide a Planet API key using --planet-api-key")
elif "Planet" in basemap:
source += PLANET_API_KEY
# Update the layout to include the map configuration
fig.update_layout(
# title="Select Image(s) using Map",
mapbox={
"style": "white-bg",
"layers": [{
"below": 'traces',
"sourcetype": "raster",
"sourceattribution": basemap,
"source": [source]
}],
"center": {"lat": lat, "lon": lon},
"zoom": zoom # Adjust zoom level based on your preference
},
mapbox_style="white-bg",
margin={"r": 0, "t": 0, "l": 0, "b": 0},
height=700
)
return fig
def get_single_map_image(lat, lon, zoom, basemap):
fig = center_map(lat, lon, zoom, basemap)
buf = io.BytesIO()
fig.write_image(buf, format='png')
buf.seek(0)
# Convert to PIL image
img = Image.open(buf)
# Center crop to the shortest dimension
width, height = img.size
if width > height:
left = (width - height) / 2
right = (width + height) / 2
top = 0
bottom = height
else:
left = 0
right = width
top = (height - width) / 2
bottom = (height + width) / 2
img = img.crop((left, top, right, bottom))
return img
def get_temporal_map_image_paths(lat, lon, zoom):
first_image = get_single_map_image(lat, lon, zoom, "PlanetScope Q3 2023")
other_images = []
for basemap in ["PlanetScope Q2 2024", "PlanetScope Q1 2024", "PlanetScope Q4 2023"]:
other_images.append(get_single_map_image(lat, lon, zoom, basemap))
# Save each image to temporary files
first_image_path = os.path.join(os.getenv('TMPDIR'), next(tempfile._get_candidate_names()) + '.png')
first_image.save(first_image_path)
other_image_paths = []
for image in other_images:
image_path = os.path.join(os.getenv('TMPDIR'), next(tempfile._get_candidate_names()) + '.png')
image.save(image_path)
other_image_paths.append(image_path)
return first_image_path, other_image_paths
def update_map(lat, lon, zoom, basemap):
return gr.Plot(center_map(lat, lon, zoom, basemap))
if __name__ == '__main__':
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
cudnn.benchmark = False
cudnn.deterministic = True
print('Initializing Chat...')
args = parse_args()
device = args.device
bounding_box_size = 100
dtype = torch.float16
colors = [
(255, 0, 0),
(0, 255, 0),
(0, 0, 255),
(210, 210, 0),
(255, 0, 255),
(0, 255, 255),
(114, 128, 250),
(0, 165, 255),
(0, 128, 0),
(144, 238, 144),
(238, 238, 175),
(255, 191, 0),
(0, 128, 0),
(226, 43, 138),
(255, 0, 255),
(0, 215, 255),
]
color_map = {
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for
color_id, color in enumerate(colors)
}
used_colors = colors
CONV_MODE = args.conv_mode
PLANET_API_KEY = args.planet_api_key
if PLANET_API_KEY is None:
PLANET_API_KEY = os.getenv('PLANET_API_KEY')
handler = Chat(
model_path=args.model_path,
conv_mode=args.conv_mode,
model_base=args.model_base,
quantization=args.quantization,
device=args.device,
cache_dir=args.cache_dir
)
# TODO: Consider adding github stars later
# <a href='https://github.com/ermongroup/TEOChat/stargazers'><img src='https://img.shields.io/github/stars/ermongroup/TEOChat.svg?style=social'></a>
title_markdown = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/ermongroup/TEOChat" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
<img src="static/logo.png" alt="TEOChat🛰️" style="max-width: 120px; height: auto;">
</a>
<div>
<h1 >TEOChat: Large Language and Vision Assistant for Temporal Earth Observation Data</h1>
<h5 style="margin: 0;">If you like our project, please give us a star ✨ on Github for the latest update.</h5>
</div>
</div>
<div align="center">
<div style="display:flex; gap: 0.25rem;" align="center">
<a href='https://github.com/ermongroup/TEOChat'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
<a href="http://arxiv.org/abs/2410.06234"><img src="https://img.shields.io/badge/Arxiv-2410.06234-red"></a>
</div>
</div>
""")
introduction = '''
**Instructions:**
<ol>
<li>Select image(s) to input to TEOChat by doing one of the following:
<ol>
<li>(Below) Click the image icon in the First Image widget to upload a single image, then optionally upload additional temporal images by clicking the Optional Additional Image(s) widget.</li>
<li>(On the right) Enter the latitude, longitude, zoom, and select the basemap to view the map image, then:
<ol>
<li>Upload the map image based on the entered latitude, longitude, zoom, and basemap.</li>
<li>Upload a temporal map image (including 4 images from PlanetScope) based on the entered latitude, longitude, and zoom.</li>
<li>Pan around and download the current map image by clicking the 📷 icon at the top right, then uploading that image.</li>
</ol>
</li>
<li>(On the bottom) Select prespecified example image(s) (and text input).</li>
</ol>
</li>
<li>Optionally draw a bounding box using the First Image widget by clicking the pen icon on the bottom.</li>
<li>Enter a text prompt in the text input above.</li>
<li>Click <b>Send</b> to generate the output.</li>
</ol>
'''
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
tos_markdown = """
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
"""
learn_more_markdown = """
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
"""
cur_dir = os.path.dirname(os.path.abspath(__file__))
example_dir = os.path.join(cur_dir, 'examples')
textbox = gr.Textbox(
show_label=False, placeholder="Upload an image or obtain one using the map viewer, then enter text here and press Send ->", container=False
)
with gr.Blocks(title='TEOChat', theme=gr.themes.Default(text_size=sizes.text_lg), css=block_css) as demo:
gr.Markdown(title_markdown)
state = gr.State()
state_ = gr.State()
first_run = gr.State()
with gr.Row():
chatbot = gr.Chatbot(label="TEOChat", bubble_full_width=True)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(
value="Send", variant="primary", interactive=True
)
with gr.Row(elem_id="buttons") as button_row:
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True)
clear_btn = gr.Button(value="🗑️ Clear history", interactive=True)
with gr.Row():
with gr.Column(scale=1, elem_id="introduction"):
gr.Markdown(introduction)
image1 = gr.ImageEditor(
label="First Image",
type="filepath",
layers=False,
transforms=(),
sources=('upload', 'clipboard'),
brush=Brush(colors=["red"], color_mode="fixed", default_size=3)
)
image_list = gr.File(
label="Optional Additional Image(s)",
file_count="multiple"
)
with gr.Column(scale=1):
with gr.Row():
map_view = gr.Plot(label="Map Image(s)")
with gr.Row():
lat = gr.Number(value=37.43144514632126, label="Latitude")
lon = gr.Number(value=-122.16210856357836, label="Longitude")
zoom = gr.Number(value=18, label="Zoom")
basemap = gr.Dropdown(
value="Google Maps",
choices=[
"Google Maps",
"PlanetScope Q2 2024",
"PlanetScope Q1 2024",
"PlanetScope Q4 2023",
"PlanetScope Q3 2023",
"United States Geological Survey",
],
label="Basemap"
)
with gr.Row():
single_map_upload_button = gr.Button("Upload Map based on Lat/Lon/Zoom/Basemap")
temporal_map_upload_button = gr.Button("Upload Temporal Map (PlanetScope Q3-Q4 2023, Q1-Q2 2024) based on Lat/Lon/Zoom")
demo.load(center_map, [lat, lon, zoom, basemap], map_view)
with gr.Row():
gr.Examples(
examples=[
[
f"{example_dir}/rqa.png",
"What is this? [21, 3, 47, 19]",
],
[
f"{example_dir}/xBD_loc.png",
"Identify the location of the building on the right of the image using a bounding box of the form [x_min, y_min, x_max, y_max].",
],
[
f"{example_dir}/AID_cls.png",
"Classify this image as one of: Oil Refinery, Compressor Station, Pipeline, Processing Plant, Well Pad.",
],
[
f"{example_dir}/HRBEN_qa.png",
"Is there a road next to a body of water?",
]
],
inputs=[image1, textbox],
outputs=[image_list, first_run, state, state_, chatbot],
label="Single Image Examples",
fn=single_example_trigger,
run_on_click=True,
cache_examples=False
)
gr.Examples(
examples=[
[
f"{example_dir}/fMoW_cls_1.png",
[f"{example_dir}/fMoW_cls_2.png", f"{example_dir}/fMoW_cls_3.png", f"{example_dir}/fMoW_cls_4.png"],
"Classify the sequence of images as one of: flooded road, lake or pond, aquaculture, dam, mountain trail.",
],
[
f"{example_dir}/xBD_dis_1.png",
[f"{example_dir}/xBD_dis_2.png"],
"What disaster has occurred in the area?",
],
[
f"{example_dir}/xBD_cls_1.png",
[f"{example_dir}/xBD_cls_2.png"],
"Classify the level of damage experienced by the building at location [0, 8, 49, 53].",
],
[
f"{example_dir}/S2Looking_cd_1.png",
[f"{example_dir}/S2Looking_cd_2.png"],
"Identify all changed buildings using bounding boxes of the form [x_min, y_min, x_max, y_max].",
],
[
f"{example_dir}/QFabric_rtqa_1.png",
[f"{example_dir}/QFabric_rtqa_2.png", f"{example_dir}/QFabric_rtqa_3.png", f"{example_dir}/QFabric_rtqa_4.png", f"{example_dir}/QFabric_rtqa_5.png"],
"In which image was construction finished?",
],
],
inputs=[image1, image_list, textbox],
outputs=[image_list, first_run, state, state_, chatbot],
label="Temporal Image Examples",
fn=temporal_example_trigger,
run_on_click=True,
cache_examples=False
)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
lat.change(fn=update_map, inputs=[lat, lon, zoom, basemap], outputs=[map_view])
lon.change(fn=update_map, inputs=[lat, lon, zoom, basemap], outputs=[map_view])
zoom.change(fn=update_map, inputs=[lat, lon, zoom, basemap], outputs=[map_view])
basemap.change(fn=update_map, inputs=[lat, lon, zoom, basemap], outputs=[map_view])
single_map_upload_button.click(fn=get_single_map_image, inputs=[lat, lon, zoom, basemap], outputs=[image1])
temporal_map_upload_button.click(fn=get_temporal_map_image_paths, inputs=[lat, lon, zoom], outputs=[image1, image_list])
submit_btn.click(
generate,
[image1, image_list, textbox, first_run, state, state_],
[state, state_, chatbot, first_run, textbox]
)
regenerate_btn.click(
regenerate,
[state, state_], [state, state_, chatbot, first_run]
).then(
generate,
[image1, image_list, textbox, first_run, state, state_],
[state, state_, chatbot, first_run, textbox]
)
clear_btn.click(
clear_history,
[state, state_],
[image1, image_list, textbox, first_run, state, state_, chatbot]
)
demo.queue()
if args.dont_use_fast_api:
demo.launch(
share=False,
server_name=args.server_name,
favicon_path='static/logo.svg',
server_port=args.port,
allowed_paths=['static/logo.png'],
)
else:
import uvicorn
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
# create a FastAPI app
app = FastAPI()
# create a static directory to store the static files
static_dir = Path('./static')
static_dir.mkdir(parents=True, exist_ok=True)
# mount FastAPI StaticFiles server
app.mount("/static", StaticFiles(directory=static_dir), name="static")
# mount Gradio app to FastAPI app
app = gr.mount_gradio_app(app, demo, path="/", favicon_path='static/logo.svg')
uvicorn.run(app, host=args.server_name, port=args.port)