|
import argparse |
|
import torch |
|
import os |
|
import json |
|
from tqdm import tqdm |
|
import shortuuid |
|
import sys |
|
|
|
sys.path.append('/deep/u/emily712/GeoChat') |
|
|
|
from geochat.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
from geochat.conversation import conv_templates, SeparatorStyle |
|
from geochat.model.builder import load_pretrained_model |
|
from geochat.utils import disable_torch_init |
|
from geochat.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria |
|
from eval_classification import * |
|
|
|
from PIL import Image |
|
import math |
|
import numpy as np |
|
|
|
def aggregate_accuracy(answers_file, output_file): |
|
""" |
|
Parses geochat inference output and aggregates votes on single images |
|
across an image sequence into the format needed for geovlm-style evaluation. |
|
|
|
params: |
|
- answers_file: path to the file containing geochat inference output |
|
- output_file: path to the file where the aggregated output will be saved |
|
""" |
|
with open(answers_file, 'r') as f: |
|
answers = [json.loads(line) for line in f] |
|
print(answers) |
|
|
|
votes = {} |
|
|
|
|
|
|
|
|
|
for answer in answers: |
|
print(answer) |
|
print(answer['linked_id']) |
|
id = answer['linked_id'] |
|
print(id) |
|
if id not in votes: |
|
item = {} |
|
item['predicted'] = [answer['predicted']] |
|
item['ground_truth'] = answer['ground_truth'] |
|
item['task'] = answer['task'] |
|
item['question'] = answer['question'] |
|
item['id'] = answer['id'] |
|
votes[id] = item |
|
else: |
|
votes['linked_id']['predicted'].append(answer['predicted']) |
|
|
|
|
|
|
|
for linked_id, predicted_dict in votes.items(): |
|
predicted = predicted_dict['predicted'] |
|
unique, counts = np.unique(predicted, return_counts=True) |
|
index = np.argmax(counts) |
|
votes[linked_id]['predicted'] = unique[index] |
|
|
|
with open(output_file, 'w') as f: |
|
json.dump(votes, f) |
|
|
|
|
|
def split_list(lst, n): |
|
"""Split a list into n (roughly) equal-sized chunks""" |
|
chunk_size = math.ceil(len(lst) / n) |
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] |
|
|
|
|
|
def get_chunk(lst, n, k): |
|
chunks = split_list(lst, n) |
|
return chunks[k] |
|
|
|
|
|
def eval_model(args): |
|
|
|
disable_torch_init() |
|
model_path = os.path.expanduser(args.model_path) |
|
model_name = get_model_name_from_path(model_path) |
|
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, cache_dir=args.cache_dir) |
|
|
|
with open(args.question_file, 'r') as f: |
|
questions = json.load(f) |
|
|
|
|
|
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) |
|
answers_file = os.path.expanduser(args.answers_file) |
|
os.makedirs(os.path.dirname(answers_file), exist_ok=True) |
|
|
|
ans_file = open(answers_file, "w") |
|
|
|
skipped_count = 0 |
|
|
|
for i in tqdm(range(0,len(questions),args.batch_size)): |
|
input_batch=[] |
|
input_image_batch=[] |
|
count=i |
|
image_folder=[] |
|
batch_end = min(i + args.batch_size, len(questions)) |
|
|
|
for j in range(i,batch_end): |
|
if 'image' not in questions[j]: |
|
print(f"Skipped entry [{skipped_count}]") |
|
skipped_count += 1 |
|
continue |
|
|
|
print(questions[j]) |
|
image_file=questions[j]['image'] |
|
qs=questions[j]['conversations'][0]['value'] |
|
|
|
if model.config.mm_use_im_start_end: |
|
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs |
|
else: |
|
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs |
|
|
|
conv = conv_templates[args.conv_mode].copy() |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() |
|
input_batch.append(input_ids) |
|
|
|
image = Image.open(os.path.join(args.image_folder, image_file)) |
|
|
|
image_folder.append(image) |
|
|
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
|
|
if len(input_batch) == 0: |
|
print("All images here were skipped") |
|
continue |
|
|
|
max_length = max(tensor.size(1) for tensor in input_batch) |
|
|
|
final_input_list = [torch.cat((torch.zeros((1,max_length - tensor.size(1)), dtype=tensor.dtype,device=tensor.get_device()), tensor),dim=1) for tensor in input_batch] |
|
final_input_tensors=torch.cat(final_input_list,dim=0) |
|
image_tensor_batch = image_processor.preprocess(image_folder,crop_size ={'height': 504, 'width': 504},size = {'shortest_edge': 504}, return_tensors='pt')['pixel_values'] |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( final_input_tensors, images=image_tensor_batch.half().cuda(), do_sample=False , temperature=args.temperature, top_p=args.top_p, num_beams=1, max_new_tokens=256,length_penalty=2.0, use_cache=True) |
|
|
|
input_token_len = final_input_tensors.shape[1] |
|
n_diff_input_output = (final_input_tensors != output_ids[:, :input_token_len]).sum().item() |
|
if n_diff_input_output > 0: |
|
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') |
|
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True) |
|
for k in range(0,len(final_input_list)): |
|
output = outputs[k].strip() |
|
if output.endswith(stop_str): |
|
output = output[:-len(stop_str)] |
|
output = output.strip() |
|
|
|
ans_id = shortuuid.uuid() |
|
|
|
ans_file.write(json.dumps({ |
|
"id": questions[count]["id"], |
|
"image_id": questions[count]["image"], |
|
"question": questions[count]['conversations'][0]['value'], |
|
"predicted": output, |
|
"ground_truth": questions[count]['conversations'][1]['value'], |
|
"task": questions[count]['task'], |
|
"linked_id": questions[count]['linked_id'] |
|
}) + "\n") |
|
count=count+1 |
|
ans_file.flush() |
|
ans_file.close() |
|
|
|
output = [json.loads(q) for q in open((ans_file), "r")] |
|
output = [{q['id']: q} for q in output] |
|
with open(ans_file, 'r') as f: |
|
json.dump(output, f) |
|
|
|
agg_ans_file = ans_file.replace('.jsonl', '_agg.jsonl') |
|
print("Raw Geochat output saved to ", ans_file) |
|
print("Now parsing and aggregating votes for geovlm evaluation...") |
|
aggregate_accuracy(ans_file, agg_ans_file) |
|
print("Aggregated output saved to ", agg_ans_file) |
|
|
|
accuracy_precision_recall(agg_ans_file, 'fmow') |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model-path", type=str, default="facebook/opt-350m") |
|
parser.add_argument("--model-base", type=str, default=None) |
|
parser.add_argument("--image-folder", type=str, default="") |
|
parser.add_argument("--question-file", type=str, default="tables/question.jsonl") |
|
parser.add_argument("--answers-file", type=str, default="answer.jsonl") |
|
parser.add_argument("--conv-mode", type=str, default="llava_v1") |
|
parser.add_argument("--num-chunks", type=int, default=1) |
|
parser.add_argument("--chunk-idx", type=int, default=0) |
|
parser.add_argument("--temperature", type=float, default=0.2) |
|
parser.add_argument("--top_p", type=float, default=None) |
|
parser.add_argument("--num_beams", type=int, default=1) |
|
parser.add_argument("--batch_size",type=int, default=1) |
|
parser.add_argument("--cache-dir", type=str, default=None) |
|
args = parser.parse_args() |
|
|
|
eval_model(args) |
|
|