|
import json |
|
import numpy as np |
|
from tqdm import tqdm |
|
from pathlib import Path |
|
|
|
from infer_utils import run_inference_single |
|
|
|
|
|
|
|
def run_aid_fmow_ucmerced_inference( |
|
model, |
|
dataset_path, |
|
processor, |
|
tokenizer, |
|
conv_mode, |
|
use_video_data=False, |
|
open_prompt=None, |
|
repeat_frames=None, |
|
prompt_strategy="interleave", |
|
chronological_prefix=True, |
|
data_frac=1, |
|
data_size=None, |
|
delete_system_prompt=False, |
|
last_image=False, |
|
print_prompt=False, |
|
**kwargs |
|
): |
|
for k, v in kwargs.items(): |
|
print("WARNING: Unused argument:", k, v) |
|
|
|
try: |
|
with open(dataset_path) as f: |
|
data = json.load(f) |
|
except: |
|
data = [] |
|
with open(dataset_path) as f: |
|
for line in f: |
|
question = json.loads(line) |
|
question["id"] = question["question_id"] |
|
question["conversations"] = [ |
|
{"value": "This is a satellite image: <video> " + question["text"]}, |
|
{"value": question["ground_truth"]} |
|
] |
|
question["video"] = [question["image"]] |
|
data.append(question) |
|
|
|
if data_size is not None: |
|
data_size = min(data_size, len(data)) |
|
idx = np.random.choice(len(data), data_size, replace=False) |
|
data = [data[i] for i in idx] |
|
elif data_frac < 1: |
|
idx = np.random.choice(len(data), int(len(data) * data_frac), replace=False) |
|
data = [data[i] for i in idx] |
|
|
|
vision_key = "video" if "video" in data[0] else "image" |
|
|
|
answers = {} |
|
for question in tqdm(data): |
|
question_id = question["id"] |
|
inp = question["conversations"][0]['value'] |
|
if open_prompt == "open": |
|
|
|
inp = inp.split("Which")[0] + "Which class does this image belong to?" |
|
elif open_prompt == "multi-open": |
|
inp = inp.split("Which")[0] + "What classes does this image belong to?" |
|
answer_str = question["conversations"][1]['value'] |
|
if 'metadata' not in question: |
|
question['metadata'] = None |
|
metadata = question['metadata'] |
|
image_paths = question[vision_key] |
|
|
|
outputs = run_inference_single( |
|
model=model, |
|
processor=processor, |
|
tokenizer=tokenizer, |
|
conv_mode=conv_mode, |
|
inp=inp, |
|
image_paths=image_paths, |
|
metadata=metadata, |
|
use_video_data=use_video_data, |
|
repeat_frames=repeat_frames, |
|
prompt_strategy=prompt_strategy, |
|
chronological_prefix=chronological_prefix, |
|
delete_system_prompt=delete_system_prompt, |
|
last_image=last_image, |
|
print_prompt=print_prompt |
|
) |
|
|
|
answers[question_id] = { |
|
"predicted": outputs, |
|
"ground_truth": answer_str |
|
} |
|
|
|
return answers |
|
|