File size: 12,752 Bytes
134cb11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
"""
calc_iou_individual adapted from calculate_mean_ap.py
author: Timothy C. Arlen
date: 28 Feb 2018
"""
import sys
from os.path import dirname, abspath
sys.path.append(dirname(dirname(dirname(dirname(abspath(__file__))))))
from collections import defaultdict
import numpy as np
import json
import ast
import re
import cv2
from shapely import wkt, Polygon, box
from infer_utils import create_mask
from matplotlib.path import Path
from tqdm import tqdm
from eval_referring import referring_expression
import matplotlib.pyplot as plt
import time
import math
from matplotlib.path import Path
def convert_geochat_string(build, img_size=256):
"""
Convert the raw str geochat output {<40><89><56><100>|<57>}, {<0><89><56><100>|<57>}
to a list of rotated bboxes.
"""
build = build.strip('{}')
bbox_segments = build.split("}{")
# Regular expression to find all numbers inside angle brackets
pattern = r"<(\d+)>"
# Extract numbers, convert them to integers, and collect into a list
bboxes = [
list(map(int, re.findall(pattern, segment)))
for segment in bbox_segments
]
rotated_bboxes = []
for bbox in bboxes:
try:
xmin, ymin, xmax, ymax, angle = [float(v) for v in bbox]
except:
print("Warning - Malformed bbox: ", bbox)
print("Original string: ", build)
print()
continue
# Convert percentages to pixel coordinates
xmin = xmin * img_size / 100
ymin = ymin * img_size / 100
xmax = xmax * img_size / 100
ymax = ymax * img_size / 100
# Calculate rectangle dimensions
rect_width = xmax - xmin
rect_height = ymax - ymin
center_x = xmin + rect_width / 2
center_y = ymin + rect_height / 2
# Calculate corners before rotation
corners = np.array([
[xmin, ymin],
[xmax, ymin],
[xmax, ymax],
[xmin, ymax]
])
# Rotate corners
angle_rad = math.radians(angle)
cos_angle = math.cos(angle_rad)
sin_angle = math.sin(angle_rad)
rotated_corners = []
for x, y in corners:
tx = x - center_x
ty = y - center_y
rotated_x = tx * cos_angle - ty * sin_angle + center_x
rotated_y = tx * sin_angle + ty * cos_angle + center_y
rotated_corners.append([rotated_x, rotated_y])
rotated_bboxes.append(np.array(rotated_corners))
return rotated_bboxes
def create_geochat_mask(buildings, img_size=(256, 256)):
"""
Given a list of buildings in an image, this function
- creates an img_size * img_size numpy array for the image
- returns the mask for all buildings
Input:
- buildings: List of geochat strings representing buildings
- img_size: Tuple indicating the size of the image (height, width)
"""
mask = np.zeros(img_size, np.uint8)
# Fill in with ones the pixels that are inside the buildings (rotated bboxes)
for bbox in buildings:
path = Path(bbox)
x, y = np.meshgrid(np.arange(img_size[1]), np.arange(img_size[0]))
points = np.vstack((x.flatten(), y.flatten())).T
mask[path.contains_points(points).reshape(img_size)] = 1
return mask
def calc_iou_individual(pred_box, gt_box):
"""Calculate IoU of single predicted and ground truth box
Args:
pred_box (list of floats): location of predicted object as
[xmin, ymin, xmax, ymax]
gt_box (list of floats): location of ground truth object as
[xmin, ymin, xmax, ymax]
Returns:
float: value of the IoU for the two boxes.
Raises:
AssertionError: if the box is obviously malformed
"""
x1_t, y1_t, x2_t, y2_t = gt_box
try:
x1_p, y1_p, x2_p, y2_p = pred_box
except:
return 0.0
if (x1_p > x2_p) or (y1_p > y2_p):
print("Prediction box is malformed? pred box: {}".format(pred_box))
if (x1_t > x2_t) or (y1_t > y2_t):
print("Ground Truth box is malformed? true box: {}".format(gt_box))
if (x2_t < x1_p or x2_p < x1_t or y2_t < y1_p or y2_p < y1_t):
return 0.0
far_x = np.min([x2_t, x2_p])
near_x = np.max([x1_t, x1_p])
far_y = np.min([y2_t, y2_p])
near_y = np.max([y1_t, y1_p])
inter_area = (far_x - near_x + 1) * (far_y - near_y + 1)
true_box_area = (x2_t - x1_t + 1) * (y2_t - y1_t + 1)
pred_box_area = (x2_p - x1_p + 1) * (y2_p - y1_p + 1)
iou = inter_area / (true_box_area + pred_box_area - inter_area)
return iou
def get_single_image_bound_results(gt_wkts, pred_geochat_string, img_size=256):
"""
Calculates upper bound and lower bound number of true_pos, false_pos, false_neg from single batch of boxes.
Args:
gt_wkts (list of strs): list of wkt strings of input polygons, scaled to raw pixel value
pred_boxes (list of lists): list of list of boxes, where each box is formatted
as [x_min, y_min, x_max, y_max] on scale from 0-100
img_size (int): dimensions of the image. defaults to 256.
Returns:
tuple of dicts: true positives (int), false positives (int), false negatives (int)
"""
if isinstance(gt_wkts, str):
gt_polygons = [wkt.loads(gt_wkts)]
else:
gt_polygons = [wkt.loads(gt_wkt) for gt_wkt in gt_wkts]
lb_preds = convert_geochat_string(pred_geochat_string, img_size)
# get mask of all gt_polygons and lb_preds
gt_mask = create_mask(gt_polygons, (img_size, img_size))
lb_preds_mask = create_geochat_mask(lb_preds, (img_size, img_size))
# get lower bound intersection and union masks
intersection = np.logical_and(gt_mask, lb_preds_mask)
union = np.logical_or(gt_mask, lb_preds_mask)
# compute lb metrics
fp = np.sum(np.logical_and(lb_preds_mask, np.logical_not(gt_mask)))
tp = np.sum(np.logical_and(lb_preds_mask, gt_mask))
fn = np.sum(np.logical_and(np.logical_not(lb_preds_mask), gt_mask))
lb_stats = {'true_pos': tp, 'false_pos': fp, 'false_neg': fn, 'intersection': np.sum(intersection), 'union': np.sum(union)}
# get upper bound intersection and union masks
ub_pred_mask = np.logical_and(gt_mask, lb_preds_mask)
intersection = np.logical_and(ub_pred_mask, gt_mask)
union = np.logical_or(gt_mask, ub_pred_mask)
# compute ub metrics
ub_fp = np.sum(np.logical_and(ub_pred_mask, np.logical_not(gt_mask)))
ub_tp = np.sum(np.logical_and(ub_pred_mask, gt_mask))
ub_fn = np.sum(np.logical_and(np.logical_not(ub_pred_mask), gt_mask))
ub_stats = {'true_pos': ub_tp, 'false_pos': ub_fp, 'false_neg': ub_fn, 'intersection': np.sum(intersection), 'union': np.sum(union)}
return lb_stats, ub_stats
def get_geochat_dataset(image_id):
if image_id.startswith("P"):
dataset = "SOTA"
elif image_id.startswith("train"):
dataset = "FAST"
else:
dataset = "SIOR"
return dataset
def calc_precision_recall(img_results):
"""Calculates precision and recall from the set of images
Args:
img_results (dict): dictionary formatted like:
{
'img_id1': {'true_pos': int, 'false_pos': int, 'false_neg': int},
'img_id2': ...
...
}
Returns:
tuple: of floats of (precision, recall)
"""
true_pos = 0; false_pos = 0; false_neg = 0
for _, res in img_results.items():
true_pos += res['true_pos']
false_pos += res['false_pos']
false_neg += res['false_neg']
try:
precision = true_pos/(true_pos + false_pos)
except ZeroDivisionError:
precision = 0.0
try:
recall = true_pos/(true_pos + false_neg)
except ZeroDivisionError:
recall = 0.0
return (precision, recall)
DIMENSIONS = {'FAST': 600,
'SIOR': 800,
'SOTA': 1024}
def referring_expression(answer_path, dataset, verbose=False, saving_path_root=None, img_size=256):
# Replace with the path to the answers file
if type(answer_path) == dict:
results = answer_path
else:
with open(answer_path) as json_data:
results = json.load(json_data)
img_results = {}
ub_results = {}
lb_results = {}
num_bboxes = 0
# Loop over results and get precision, recall overall
for id, result in tqdm(results.items()):
if dataset == "geochat_xbd":
pred = result['predicted']
dataset = get_geochat_dataset(id)
img_size = (DIMENSIONS[dataset])
pred = convert_geochat_string(pred, img_size)
ground_truth = result['ground_truth']
ground_truth = np.array(ground_truth)
num_bboxes += len(ground_truth)
img_results[id] = get_single_image_results(ground_truth, pred, iou_thr=0.5)
continue
try:
if 'referring_expression' not in result['task']:
continue # no bounding box outputs for temporal_referring_expression
except:
pass
# TODO: clean the following todos
# TODO: LOOP THROUGH IDENTIFY TASKS/QUESTIONS IN THE DATASET
# TODO: HANDLE WHEN THERE ARE NO BOUNDING BOXES IN GROUND TRUTH for auxiliary tasks
if not result['original_input_polygon']:
first_open_bracket_ind = result["predicted"].find("{")
last_close_bracket_ind = result["predicted"].rfind("}")
if last_close_bracket_ind != -1 and first_open_bracket_ind != -1:
parsed_predicted = result["predicted"][first_open_bracket_ind:last_close_bracket_ind+1]
else:
parsed_predicted = ""
predicted_boxes = convert_geochat_string(parsed_predicted)
# If ground truth contains no boxes: all predictions are false positives
false_pos = len(predicted_boxes)
false_pos_pixels = np.sum(create_geochat_mask(predicted_boxes))
img_results[id] = {'true_pos': 0, 'false_pos': false_pos, 'false_neg': 0, 'intersection':0, 'union':false_pos_pixels}
ub_results[id] = {'true_pos': 0, 'false_pos': false_pos_pixels, 'false_neg': 0, 'intersection':0, 'union':false_pos_pixels}
lb_results[id] = {'true_pos': 0, 'false_pos': false_pos_pixels, 'false_neg': 0, 'intersection':0, 'union':false_pos_pixels}
continue
else: # Ground truth contains boxes: find predicted Geochat boxes
first_open_bracket_ind = result["predicted"].find("{")
last_close_bracket_ind = result["predicted"].rfind("}")
if last_close_bracket_ind != -1 and first_open_bracket_ind != -1:
parsed_predicted = result["predicted"][first_open_bracket_ind:last_close_bracket_ind+1]
else:
parsed_predicted = ""
gt_wkts = result['original_input_polygon']
lb_results[id], ub_results[id] = get_single_image_bound_results(gt_wkts, parsed_predicted)
if len(ub_results) != 0:
ub_intersection = np.sum([res['intersection'] for res in ub_results.values()])
ub_union = np.sum([res['union'] for res in ub_results.values()])
lb_intersection = np.sum([res['intersection'] for res in lb_results.values()])
lb_union = np.sum([res['union'] for res in lb_results.values()])
print("Upper bound IOU: ", ub_intersection / ub_union if ub_union != 0 else 0)
print("Lower bound IOU: ", lb_intersection / lb_union if lb_union != 0 else 0)
ub_precision, ub_recall = calc_precision_recall(ub_results)
lb_precision, lb_recall = calc_precision_recall(lb_results)
print('Lower bound precision: ', lb_precision)
print('Lower bound recall: ', lb_recall)
print("Upper bound F1: ", 2 * (ub_precision * ub_recall) / (ub_precision + ub_recall) if (ub_precision + ub_recall) != 0 else 0)
print("Lower bound F1: ", 2 * (lb_precision * lb_recall) / (lb_precision + lb_recall) if (lb_precision + lb_recall) != 0 else 0)
print("[email protected]: ", np.sum([res['true_pos'] for res in img_results.values()]) / num_bboxes)
if type(answer_path) == dict:
return
if saving_path_root:
with open(f"{saving_path_root}/referring_expression_scores.json", 'w') as f:
json.dump(img_results, f)
if __name__ == '__main__':
answer_path = "scripts/geovlm/eval/xBD/answers/ckpt14000-geochat-bench_interleave_test.json"
referring_expression(answer_path, dataset="geochat_xbd")
#answer_path = "scripts/geochat/eval/xBD/geochat_xbd_test_auxiliary_dict.json"
# referring_expression(answer_path, dataset="xbd")
|