File size: 12,752 Bytes
134cb11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
"""
calc_iou_individual adapted from calculate_mean_ap.py
author: Timothy C. Arlen
date: 28 Feb 2018
"""

import sys
from os.path import dirname, abspath
sys.path.append(dirname(dirname(dirname(dirname(abspath(__file__))))))

from collections import defaultdict
import numpy as np
import json
import ast
import re
import cv2
from shapely import wkt, Polygon, box
from infer_utils import create_mask
from matplotlib.path import Path
from tqdm import tqdm

from eval_referring import referring_expression
import matplotlib.pyplot as plt
import time
import math
from matplotlib.path import Path

def convert_geochat_string(build, img_size=256):
    """
    Convert the raw str geochat output {<40><89><56><100>|<57>}, {<0><89><56><100>|<57>}
    to a list of rotated bboxes.
    """
    build = build.strip('{}')
    bbox_segments = build.split("}{")
    # Regular expression to find all numbers inside angle brackets
    pattern = r"<(\d+)>"

    # Extract numbers, convert them to integers, and collect into a list
    bboxes = [
        list(map(int, re.findall(pattern, segment)))
        for segment in bbox_segments
    ]

    rotated_bboxes = []
    for bbox in bboxes:
        try:
            xmin, ymin, xmax, ymax, angle = [float(v) for v in bbox]
        except:
            print("Warning - Malformed bbox: ", bbox)
            print("Original string: ", build)
            print()
            continue

        # Convert percentages to pixel coordinates
        xmin = xmin * img_size / 100
        ymin = ymin * img_size / 100
        xmax = xmax * img_size / 100
        ymax = ymax * img_size / 100
        
        # Calculate rectangle dimensions
        rect_width = xmax - xmin
        rect_height = ymax - ymin
        center_x = xmin + rect_width / 2
        center_y = ymin + rect_height / 2
        
        # Calculate corners before rotation
        corners = np.array([
            [xmin, ymin],
            [xmax, ymin],
            [xmax, ymax],
            [xmin, ymax]
        ])
        
        # Rotate corners
        angle_rad = math.radians(angle)
        cos_angle = math.cos(angle_rad)
        sin_angle = math.sin(angle_rad)
        rotated_corners = []
        for x, y in corners:
            tx = x - center_x
            ty = y - center_y
            rotated_x = tx * cos_angle - ty * sin_angle + center_x
            rotated_y = tx * sin_angle + ty * cos_angle + center_y
            rotated_corners.append([rotated_x, rotated_y])

        rotated_bboxes.append(np.array(rotated_corners))

    return rotated_bboxes

def create_geochat_mask(buildings, img_size=(256, 256)):
    """
    Given a list of buildings in an image, this function 
    - creates an img_size * img_size numpy array for the image
    - returns the mask for all buildings
    Input:
    - buildings: List of geochat strings representing buildings
    - img_size: Tuple indicating the size of the image (height, width)
    """
    mask = np.zeros(img_size, np.uint8)

    # Fill in with ones the pixels that are inside the buildings (rotated bboxes)
    for bbox in buildings:
        path = Path(bbox)
        x, y = np.meshgrid(np.arange(img_size[1]), np.arange(img_size[0]))
        points = np.vstack((x.flatten(), y.flatten())).T
        mask[path.contains_points(points).reshape(img_size)] = 1

    return mask

def calc_iou_individual(pred_box, gt_box):
    """Calculate IoU of single predicted and ground truth box
    Args:
        pred_box (list of floats): location of predicted object as
            [xmin, ymin, xmax, ymax]
        gt_box (list of floats): location of ground truth object as
            [xmin, ymin, xmax, ymax]
    Returns:
        float: value of the IoU for the two boxes.
    Raises:
        AssertionError: if the box is obviously malformed
    """
    x1_t, y1_t, x2_t, y2_t = gt_box
    try:
        x1_p, y1_p, x2_p, y2_p = pred_box
    except:
        return 0.0

    if (x1_p > x2_p) or (y1_p > y2_p):
        print("Prediction box is malformed? pred box: {}".format(pred_box))
    if (x1_t > x2_t) or (y1_t > y2_t):
        print("Ground Truth box is malformed? true box: {}".format(gt_box))

    if (x2_t < x1_p or x2_p < x1_t or y2_t < y1_p or y2_p < y1_t):
        return 0.0

    far_x = np.min([x2_t, x2_p])
    near_x = np.max([x1_t, x1_p])
    far_y = np.min([y2_t, y2_p])
    near_y = np.max([y1_t, y1_p])

    inter_area = (far_x - near_x + 1) * (far_y - near_y + 1)
    true_box_area = (x2_t - x1_t + 1) * (y2_t - y1_t + 1)
    pred_box_area = (x2_p - x1_p + 1) * (y2_p - y1_p + 1)
    iou = inter_area / (true_box_area + pred_box_area - inter_area)

    return iou  

def get_single_image_bound_results(gt_wkts, pred_geochat_string, img_size=256):
    """
    Calculates upper bound and lower bound number of true_pos, false_pos, false_neg from single batch of boxes.
    Args:
        gt_wkts (list of strs): list of wkt strings of input polygons, scaled to raw pixel value
        pred_boxes (list of lists): list of list of boxes, where each box is formatted
            as [x_min, y_min, x_max, y_max] on scale from 0-100
        img_size (int): dimensions of the image. defaults to 256. 
    Returns:
        tuple of dicts: true positives (int), false positives (int), false negatives (int)
    """
    if isinstance(gt_wkts, str):
        gt_polygons = [wkt.loads(gt_wkts)]
    else: 
        gt_polygons = [wkt.loads(gt_wkt) for gt_wkt in gt_wkts]

    lb_preds = convert_geochat_string(pred_geochat_string, img_size)
    # get mask of all gt_polygons and lb_preds
    gt_mask = create_mask(gt_polygons, (img_size, img_size))
    lb_preds_mask = create_geochat_mask(lb_preds, (img_size, img_size))

    # get lower bound intersection and union masks 
    intersection = np.logical_and(gt_mask, lb_preds_mask)
    union = np.logical_or(gt_mask, lb_preds_mask)

    # compute lb metrics
    fp = np.sum(np.logical_and(lb_preds_mask, np.logical_not(gt_mask)))
    tp = np.sum(np.logical_and(lb_preds_mask, gt_mask))
    fn = np.sum(np.logical_and(np.logical_not(lb_preds_mask), gt_mask))
    lb_stats = {'true_pos': tp, 'false_pos': fp, 'false_neg': fn, 'intersection': np.sum(intersection), 'union': np.sum(union)}

    # get upper bound intersection and union masks
    ub_pred_mask = np.logical_and(gt_mask, lb_preds_mask)
    intersection = np.logical_and(ub_pred_mask, gt_mask)
    union = np.logical_or(gt_mask, ub_pred_mask)

    # compute ub metrics
    ub_fp = np.sum(np.logical_and(ub_pred_mask, np.logical_not(gt_mask)))
    ub_tp = np.sum(np.logical_and(ub_pred_mask, gt_mask))
    ub_fn = np.sum(np.logical_and(np.logical_not(ub_pred_mask), gt_mask))
    ub_stats = {'true_pos': ub_tp, 'false_pos': ub_fp, 'false_neg': ub_fn, 'intersection': np.sum(intersection), 'union': np.sum(union)}

    return lb_stats, ub_stats

def get_geochat_dataset(image_id):
    if image_id.startswith("P"):
        dataset = "SOTA"
    elif image_id.startswith("train"):
        dataset = "FAST"
    else:
        dataset = "SIOR"
    return dataset

def calc_precision_recall(img_results):
    """Calculates precision and recall from the set of images
    Args:
        img_results (dict): dictionary formatted like:
            {
                'img_id1': {'true_pos': int, 'false_pos': int, 'false_neg': int},
                'img_id2': ...
                ...
            }
    Returns:
        tuple: of floats of (precision, recall)
    """
    true_pos = 0; false_pos = 0; false_neg = 0
    for _, res in img_results.items():
        true_pos += res['true_pos']
        false_pos += res['false_pos']
        false_neg += res['false_neg']

    try:
        precision = true_pos/(true_pos + false_pos)
    except ZeroDivisionError:
        precision = 0.0
    try:
        recall = true_pos/(true_pos + false_neg)
    except ZeroDivisionError:
        recall = 0.0

    return (precision, recall)


DIMENSIONS = {'FAST': 600,
              'SIOR': 800,
              'SOTA': 1024}


def referring_expression(answer_path, dataset, verbose=False, saving_path_root=None, img_size=256):
    # Replace with the path to the answers file
    if type(answer_path) == dict:
        results = answer_path
    else:
        with open(answer_path) as json_data:
            results = json.load(json_data)

    img_results = {}
    ub_results = {}
    lb_results = {}
    num_bboxes = 0
    # Loop over results and get precision, recall overall
    for id, result in tqdm(results.items()):

        if dataset == "geochat_xbd":
            pred = result['predicted']

            dataset = get_geochat_dataset(id)
            img_size = (DIMENSIONS[dataset])
            pred = convert_geochat_string(pred, img_size)

            ground_truth = result['ground_truth']
            ground_truth = np.array(ground_truth)
            num_bboxes += len(ground_truth)

            img_results[id] = get_single_image_results(ground_truth, pred, iou_thr=0.5)

            continue

        try:
            if 'referring_expression' not in result['task']:
                continue  # no bounding box outputs for temporal_referring_expression
        except:
            pass

        # TODO: clean the following todos
        
        # TODO: LOOP THROUGH IDENTIFY TASKS/QUESTIONS IN THE DATASET
       
        # TODO: HANDLE WHEN THERE ARE NO BOUNDING BOXES IN GROUND TRUTH for auxiliary tasks
        if not result['original_input_polygon']:
            first_open_bracket_ind = result["predicted"].find("{")
            last_close_bracket_ind = result["predicted"].rfind("}")
            if last_close_bracket_ind != -1 and first_open_bracket_ind != -1:
                parsed_predicted = result["predicted"][first_open_bracket_ind:last_close_bracket_ind+1]
            else:   
                parsed_predicted = ""      
            predicted_boxes = convert_geochat_string(parsed_predicted)
            # If ground truth contains no boxes: all predictions are false positives
            false_pos = len(predicted_boxes)
            false_pos_pixels = np.sum(create_geochat_mask(predicted_boxes))
            img_results[id] = {'true_pos': 0, 'false_pos': false_pos, 'false_neg': 0, 'intersection':0, 'union':false_pos_pixels}
            ub_results[id] = {'true_pos': 0, 'false_pos': false_pos_pixels, 'false_neg': 0, 'intersection':0, 'union':false_pos_pixels}
            lb_results[id] = {'true_pos': 0, 'false_pos': false_pos_pixels, 'false_neg': 0, 'intersection':0, 'union':false_pos_pixels}
            continue
        else: # Ground truth contains boxes: find predicted Geochat boxes
            first_open_bracket_ind = result["predicted"].find("{")
            last_close_bracket_ind = result["predicted"].rfind("}")
            if last_close_bracket_ind != -1 and first_open_bracket_ind != -1:
                parsed_predicted = result["predicted"][first_open_bracket_ind:last_close_bracket_ind+1]
            else:   
                parsed_predicted = "" 
            gt_wkts = result['original_input_polygon']  
            lb_results[id], ub_results[id] = get_single_image_bound_results(gt_wkts, parsed_predicted)

    if len(ub_results) != 0:
        ub_intersection = np.sum([res['intersection'] for res in ub_results.values()])
        ub_union = np.sum([res['union'] for res in ub_results.values()])
        lb_intersection = np.sum([res['intersection'] for res in lb_results.values()])
        lb_union = np.sum([res['union'] for res in lb_results.values()])
        print("Upper bound IOU: ", ub_intersection / ub_union if ub_union != 0 else 0)
        print("Lower bound IOU: ", lb_intersection / lb_union if lb_union != 0 else 0)
        ub_precision, ub_recall = calc_precision_recall(ub_results)
        lb_precision, lb_recall = calc_precision_recall(lb_results)
        print('Lower bound precision: ', lb_precision)
        print('Lower bound recall: ', lb_recall)
        print("Upper bound F1: ", 2 * (ub_precision * ub_recall) / (ub_precision + ub_recall) if (ub_precision + ub_recall) != 0 else 0)
        print("Lower bound F1: ", 2 * (lb_precision * lb_recall) / (lb_precision + lb_recall) if (lb_precision + lb_recall) != 0 else 0)

    print("[email protected]: ", np.sum([res['true_pos'] for res in img_results.values()]) / num_bboxes)

    if type(answer_path) == dict:
        return 
    
    if saving_path_root:
        with open(f"{saving_path_root}/referring_expression_scores.json", 'w') as f:
            json.dump(img_results, f)

if __name__ == '__main__':
    answer_path = "scripts/geovlm/eval/xBD/answers/ckpt14000-geochat-bench_interleave_test.json"
    referring_expression(answer_path, dataset="geochat_xbd")
    #answer_path = "scripts/geochat/eval/xBD/geochat_xbd_test_auxiliary_dict.json"
    # referring_expression(answer_path, dataset="xbd")