File size: 13,446 Bytes
2a2fe0b
c432f1f
 
2a2fe0b
c432f1f
 
 
 
 
 
2a2fe0b
 
c432f1f
2a2fe0b
 
c432f1f
 
 
3dffa84
c432f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dffa84
c432f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a2fe0b
 
c432f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dffa84
c432f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a2fe0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c432f1f
 
3dffa84
2a2fe0b
 
c432f1f
2a2fe0b
 
c432f1f
 
2a2fe0b
 
c432f1f
 
2a2fe0b
 
 
 
 
 
 
 
 
 
 
 
 
 
c432f1f
2a2fe0b
 
c432f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a2fe0b
c432f1f
2a2fe0b
c432f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dffa84
 
c432f1f
 
 
 
 
3dffa84
c432f1f
 
 
 
 
 
 
3dffa84
 
 
 
c432f1f
 
 
 
 
 
 
 
 
 
3dffa84
c432f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dffa84
 
 
c432f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dffa84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c432f1f
 
 
 
3dffa84
 
c432f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a2fe0b
 
 
 
 
c432f1f
 
2a2fe0b
 
 
 
c432f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a2fe0b
 
 
 
 
c432f1f
 
 
 
2a2fe0b
c432f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import torch
from transformers import AutoTokenizer,AutoModelForTokenClassification
from transformers import GeoLMModel
import requests
import numpy as np
import pandas as pd
import scipy.spatial as sp   
import streamlit as st
import folium
from streamlit.components.v1 import html


from haversine import haversine, Unit


dataset=None



def generate_human_readable(tokens,labels):
    ret = []
    for t,lab in zip(tokens,labels):
        if t == '[SEP]':
            continue

        if t.startswith("##") :
            assert len(ret) > 0
            ret[-1] = ret[-1] + t.strip('##')

        elif lab==2:
            assert len(ret) > 0
            ret[-1] = ret[-1] + " "+ t.strip('##')
        else:
            ret.append(t)

    return ret

def getSlice(tensor):
    result = []
    curr = []
    for index, value in enumerate(tensor[0]):
        if value == 1 or value == 2:
            curr.append(index)

        if value == 0 and curr != []:
            result.append(curr)
            curr = []

    return result

def getIndex(input):


    tokenizer, model= getModel1()

    # Tokenize input sentence
    tokens = tokenizer.encode(input, return_tensors="pt")


    # Pass tokens through the model
    outputs = model(tokens) 


    # Retrieve predicted labels for each token
    predicted_labels = torch.argmax(outputs.logits, dim=2)

    predicted_labels = predicted_labels.detach().cpu().numpy()

    # "id2label": { "0": "O", "1": "B-Topo", "2": "I-Topo"  }

    predicted_labels = [model.config.id2label[label] for label in predicted_labels[0]]
    # print(predicted_labels)

    predicted_labels = torch.argmax(outputs.logits, dim=2)

    # print(predicted_labels)

    query_tokens = tokens[0][torch.where(predicted_labels[0] != 0)[0]]

    query_labels = predicted_labels[0][torch.where(predicted_labels[0] != 0)[0]]

    print(predicted_labels)    
    print(predicted_labels.shape)

    slices=getSlice(predicted_labels)


    # print(tokenizer.convert_ids_to_tokens(query_tokens))


    return slices

def cutSlices(tensor, slicesList):

    locationTensor= torch.zeros(1, len(slicesList), 768)

    curr=0
    for slice in slicesList:

        if len(slice)==1:
            locationTensor[0][curr] = tensor[0][slice[0]]
            curr=curr+1
        if len(slice)>1 :

            sliceTensor=tensor[0][slice[0]:slice[-1]+1]
            #(len, 768)-> (1,len, 768)
            sliceTensor = sliceTensor.unsqueeze(0)

            mean = torch.mean(sliceTensor,dim=1,keepdim=True)

            locationTensor[0][curr] = mean[0]

            curr=curr+1


    return locationTensor






def MLearningFormInput(input):


    tokenizer,model=getModel2()

    tokens = tokenizer.encode(input, return_tensors="pt") 

     # ['[CLS]', 'Minneapolis','[SEP]','Saint','Paul','[SEP]','Du','##lut','##h','[SEP]']
    # print(tokens)


    outputs = model(tokens, spatial_position_list_x=torch.zeros(tokens.shape), spatial_position_list_y=torch.zeros(tokens.shape))


    # print(outputs.last_hidden_state)

    # print(outputs.last_hidden_state.shape)


    slicesIndex=getIndex(input)

    # print(slicesIndex)

    #tensor -> tensor
    res= cutSlices(outputs.last_hidden_state, slicesIndex)


    return res





def generate_human_readable(tokens,labels):
    ret = []
    for t,lab in zip(tokens,labels):
        if t == '[SEP]':
            continue

        if t.startswith("##") :
            assert len(ret) > 0
            ret[-1] = ret[-1] + t.strip('##')

        elif lab==2:
            assert len(ret) > 0
            ret[-1] = ret[-1] + " "+ t.strip('##')
        else:
            ret.append(t)

    return ret


def getLocationName(input_sentence):
    # Model name from Hugging Face model hub
    tokenizer, model= getModel1()


    # Tokenize input sentence
    tokens = tokenizer.encode(input_sentence, return_tensors="pt")


    # Pass tokens through the model
    outputs = model(tokens) 


    # Retrieve predicted labels for each token
    predicted_labels = torch.argmax(outputs.logits, dim=2)

    predicted_labels = predicted_labels.detach().cpu().numpy()

    # "id2label": { "0": "O", "1": "B-Topo", "2": "I-Topo"  }

    predicted_labels = [model.config.id2label[label] for label in predicted_labels[0]]

    predicted_labels = torch.argmax(outputs.logits, dim=2)

    query_tokens = tokens[0][torch.where(predicted_labels[0] != 0)[0]]

    query_labels = predicted_labels[0][torch.where(predicted_labels[0] != 0)[0]]


    human_readable = generate_human_readable(tokenizer.convert_ids_to_tokens(query_tokens), query_labels)

    return human_readable    



def search_geonames(toponym, df):
    # GeoNames API endpoint
    api_endpoint = "http://api.geonames.org/searchJSON"

    username = "zekun"

    print(toponym)

    params = {
        'q': toponym,
        'username': username,
        'maxRows':10
    }

    response = requests.get(api_endpoint, params=params)
    data = response.json()

    result = []

    lat=[]
    lon=[]

    if 'geonames' in data:
        for place_info in data['geonames']:
            latitude = float(place_info.get('lat', 0.0))
            longitude = float(place_info.get('lng', 0.0))

            lat.append(latitude)
            lon.append(longitude)

            print(latitude)
            print(longitude)

            # getNeighborsDistance

            id = place_info.get('geonameId', '')

            print(id)

            global dataset
            res = get50Neigbors(id, dataset, k=50) 
            result.append(res)
            # candidate_places.append({
            #     'name': place_info.get('name', ''),
            #     'country': place_info.get('countryName', ''),
            #     'latitude': latitude,
            #     'longitude': longitude,

            # })
            print(res)


    df['lat'] = lat
    df['lon'] = lon
    result = torch.cat(result, dim=1).detach().numpy()
    return result



def get50Neigbors(locationID, dataset, k=50):

    print("neighbor part----------------------------------------------------------------")

    input_row = dataset.loc[dataset['GeonameID'] == locationID].iloc[0]


    lat, lon, geohash,name = input_row['Latitude'], input_row['Longitude'], input_row['Geohash'], input_row['Name']

    filtered_dataset = dataset.loc[dataset['Geohash'].str.startswith(geohash[:7])].copy()

    filtered_dataset['distance'] = filtered_dataset.apply(
        lambda row: haversine((lat, lon), (row['Latitude'], row['Longitude']), Unit.KILOMETERS),
        axis=1
    ).copy()


    print("neighbor end----------------------------------------------------------------")



    filtered_dataset = filtered_dataset.sort_values(by='distance')



    nearest_neighbors = filtered_dataset.head(k)[['Name']]


    neighbors=nearest_neighbors.values.tolist()


    tokenizer, model= getModel1_0()


    sep_token_id = tokenizer.convert_tokens_to_ids(tokenizer.sep_token)
    cls_token_id = tokenizer.convert_tokens_to_ids(tokenizer.cls_token)


    neighbor_token_list = []
    neighbor_token_list.append(cls_token_id)

    target_token=tokenizer.convert_tokens_to_ids(tokenizer.tokenize(name))



    for neighbor in neighbors:


        neighbor_token = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(neighbor[0]))
        neighbor_token_list.extend(neighbor_token)
        neighbor_token_list.append(sep_token_id)


    # print(tokenizer.convert_ids_to_tokens(neighbor_token_list))

    #--------------------------------------------


    tokens = torch.Tensor(neighbor_token_list).unsqueeze(0).long()


    # input "new neighbor sentence"-> model -> output
    outputs = model(tokens, spatial_position_list_x=torch.zeros(tokens.shape), spatial_position_list_y=torch.zeros(tokens.shape))



    # print(outputs.last_hidden_state)

    # print(outputs.last_hidden_state.shape)


    targetIndex=list(range(1, len(target_token)+1))

    # #tensor -> tensor
    # get (1, len(target_token), 768) -> (1, 1, 768)
    res=cutSlices(outputs.last_hidden_state, [targetIndex])





    return res



def cosine_similarity(target_feature, candidate_feature):

    target_feature = target_feature.squeeze()
    candidate_feature = candidate_feature.squeeze()

    dot_product = torch.dot(target_feature, candidate_feature)
    
    target = torch.norm(target_feature)
    candidate = torch.norm(candidate_feature)
    
    similarity = dot_product / (target * candidate)
    
    return similarity.item() 


@st.cache_data

def getCSV():
    dataset = pd.read_csv('geohash.csv')
    return dataset

@st.cache_data

def getModel1():
    # Model name from Hugging Face model hub
    model_name = "zekun-li/geolm-base-toponym-recognition"

    # Load tokenizer and model
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForTokenClassification.from_pretrained(model_name)

    return tokenizer,model

def getModel1_0():
    # Model name from Hugging Face model hub
    model_name = "zekun-li/geolm-base-toponym-recognition"

    # Load tokenizer and model
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = GeoLMModel.from_pretrained(model_name)
    return tokenizer,model



def getModel2():

    model_name = "zekun-li/geolm-base-cased"

    tokenizer = AutoTokenizer.from_pretrained(model_name)

    model = GeoLMModel.from_pretrained(model_name)

    return tokenizer,model
 

def showing(df):

    m = folium.Map(location=[df['lat'].mean(), df['lon'].mean()], zoom_start=5)

    size_scale = 100  
    color_scale = 255  
    for i in range(len(df)):
        lat, lon, prob = df.iloc[i]['lat'], df.iloc[i]['lon'], df.iloc[i]['prob']
        
        size = int(prob**2 * size_scale )
        color = int(prob**2 * color_scale)
        
        folium.CircleMarker(
            location=[lat, lon],
            radius=size,
            color=f'#{color:02X}0000',
            fill=True,
            fill_color=f'#{color:02X}0000'
        ).add_to(m)

    m.save("map.html")

    with open("map.html", "r", encoding="utf-8") as f:
        map_html = f.read()

    st.components.v1.html(map_html, height=600)


def mapping(selected_place,locations, sentence_info):
    location_index = locations.index(selected_place)
    print(location_index)

    df = pd.DataFrame()

    # get same name for "Beijing" in geonames
    same_name_embedding=search_geonames(selected_place, df)


    sim_matrix=[]
    print(sim_matrix)


    same_name_embedding=torch.tensor(same_name_embedding)
    # loop each "Beijing"
    for i in range(same_name_embedding.size(1)):
        print((sentence_info[:, location_index, :]).shape)
        print((same_name_embedding[:, i, :]).shape)

        similarities = cosine_similarity(sentence_info[:, location_index, :], same_name_embedding[:, i, :])
        sim_matrix.append(similarities)

    # print("Cosine Similarity Matrix:")
    # print(sim_matrix)
    
    def sigmoid(x):
        return 1 / (1 + np.exp(-x))

    prob_matrix = sigmoid(np.array(sim_matrix))

    
    df['prob'] = prob_matrix


    print(df)

    showing(df)



def show_on_map():



    input = st.text_area("Enter a sentence:", height=200)

    st.button("Submit")

    sentence_info= MLearningFormInput(input)

    print("sentence info: ")
    print(sentence_info)
    print(sentence_info.shape)


     # input: a sentence  -> output : locations 
    locations=getLocationName(input)

    # 1. input: a sentence  ->  output: tensor (1sentence_info
    selected_place = st.selectbox("Select a location:", locations)
    
    if selected_place is not None:

        mapping(selected_place, locations, sentence_info)




if __name__ == "__main__":


    dataset = getCSV()

    show_on_map()
        
     
    # # can be hidding.............................................................
    
    # #len: 80
    # input= 'Minneapolis, officially the City of Minneapolis, is a city in the state of Minnesota and the county seat of Hennepin County. making it the largest city in Minnesota and the 46th-most-populous in the  United States. Nicknamed the "City of Lakes", Minneapolis is abundant in water,  with thirteen lakes, wetlands, the Mississippi River, creeks, and waterfalls.'


    # 1. input: a sentence  ->  output: tensor (1,num_locations,768)
    # sentence_info= MLearningFormInput(input)

    # print("sentence info: ")
    # print(sentence_info)
    # print(sentence_info.shape)



    # # input: a sentence  -> output : locations 
    # locations=getLocationName(input)

    # print(locations)

    # j=0


    # k=0

    # for location in locations:

    #     if k==0:

    #         # input: locations -> output: search in geoname(get top 10 items) -> loop each item -> num_location x 10 x (1,1,768)
    #         same_name_embedding=search_geonames(location)

    #         sim_matrix=[]
    #         print(sim_matrix)





    #         same_name_embedding=torch.tensor(same_name_embedding)
    #         # loop each "Beijing"
    #         for i in range(same_name_embedding.size(1)):
    #             # print((sentence_info[:, j, :]).shape)
    #             # print((same_name_embedding[:, i, :]).shape)

    #             similarities = cosine_similarity(sentence_info[:, j, :], same_name_embedding[:, i, :])
    #             sim_matrix.append(similarities)



    #         j=j+1

            
    #         print("Cosine Similarity Matrix:")
    #         print(sim_matrix)

    #         k=1

    #     else:
    #         break