File size: 3,441 Bytes
2a2fe0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import streamlit as st
import plotly.graph_objects as go
import torch
from transformers import AutoModelForTokenClassification, AutoTokenizer
import requests

def search_geonames(location):
    api_endpoint = "http://api.geonames.org/searchJSON"
    username = "zekun"  

    params = {
        'q': location,
        'username': username,
        'maxRows': 5
    }

    response = requests.get(api_endpoint, params=params)
    data = response.json()

    if 'geonames' in data:
        fig = go.Figure()  
        for place_info in data['geonames']:
            latitude = float(place_info.get('lat', 0.0))
            longitude = float(place_info.get('lng', 0.0))

            fig.add_trace(go.Scattermapbox(
                lat=[latitude],
                lon=[longitude],
                mode='markers',
                marker=go.scattermapbox.Marker(
                    size=10,
                    color='orange',
                ),
                text=[f'Location: {location}'],
                hoverinfo="text",
                hovertemplate='<b>Location</b>: %{text}',
            ))

        fig.update_layout(
            mapbox_style="open-street-map",
            hovermode='closest',
            mapbox=dict(
                bearing=0,
                center=go.layout.mapbox.Center(
                    lat=latitude,
                    lon=longitude
                ),
                pitch=0,
                zoom=2
            ))

        st.plotly_chart(fig)
    
    # Return an empty figure
    return go.Figure()


def mapping(location):
    st.write(f"Mapping location: {location}")

    search_geonames(location)



def generate_human_readable(tokens,labels):
    ret = []
    for t,lab in zip(tokens,labels):
        if t == '[SEP]':
            continue

        if t.startswith("##") :
            assert len(ret) > 0
            ret[-1] = ret[-1] + t.strip('##')

        elif lab==2:
            assert len(ret) > 0
            ret[-1] = ret[-1] + " "+ t.strip('##')
        else:
            ret.append(t)

    return ret



def showOnMap(input_sentence):
    # get the location names: 

    model_name = "zekun-li/geolm-base-toponym-recognition"

    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForTokenClassification.from_pretrained(model_name)

    tokens = tokenizer.encode(input_sentence, return_tensors="pt")

    outputs = model(tokens) 

    predicted_labels = torch.argmax(outputs.logits, dim=2)

    predicted_labels = predicted_labels.detach().cpu().numpy()

    # "id2label": { "0": "O", "1": "B-Topo", "2": "I-Topo"  }

    predicted_labels = [model.config.id2label[label] for label in predicted_labels[0]]

    predicted_labels = torch.argmax(outputs.logits, dim=2)

    query_tokens = tokens[0][torch.where(predicted_labels[0] != 0)[0]]

    query_labels = predicted_labels[0][torch.where(predicted_labels[0] != 0)[0]]

    human_readable = generate_human_readable(tokenizer.convert_ids_to_tokens(query_tokens), query_labels)
    #['Los Angeles', 'L . A .', 'California', 'U . S .', 'Southern California', 'Los Angeles', 'United States', 'New York City']

    return human_readable





def show_on_map():

    input = st.text_area("Enter a sentence:", height=200)

    st.button("Submit")

    places = showOnMap(input)

    selected_place = st.selectbox("Select a location:", places)
    mapping(selected_place)



if __name__ == "__main__":
    show_on_map()