jinhybr's picture
Update app.py
1a5ca8a
import os
os.system('pip install pip --upgrade')
os.system('pip install -q git+https://github.com/huggingface/transformers.git')
os.system("pip install pyyaml==5.1")
# workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158)
os.system(
"pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html"
)
# install detectron2 that matches pytorch 1.8
# See https://detectron2.readthedocs.io/tutorials/install.html for instructions
os.system(
"pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html"
)
## install PyTesseract
os.system("pip install -q pytesseract")
import gradio as gr
import numpy as np
from transformers import LayoutLMv3Processor, LiltForTokenClassification
from datasets import load_dataset
from PIL import Image, ImageDraw, ImageFont
processor = LiltForTokenClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base")
model = LayoutLMv3Processor.from_pretrained(
"jinhybr/LiLt-funsd-en"
)
####
####
# load image example
dataset = load_dataset("nielsr/funsd-layoutlmv3", split="test")
#image = Image.open(dataset[0]["image"]).convert("RGB")
image = Image.open("./example_lm3.png")
image.save("document.png")
labels = dataset.features["ner_tags"].feature.names
id2label = {v: k for v, k in enumerate(labels)}
# helper function to unnormalize bboxes for drawing onto the image
def unnormalize_box(bbox, width, height):
return [
width * (bbox[0] / 1000),
height * (bbox[1] / 1000),
width * (bbox[2] / 1000),
height * (bbox[3] / 1000),
]
label2color = {
"B-HEADER": "blue",
"B-QUESTION": "red",
"B-ANSWER": "green",
"I-HEADER": "blue",
"I-QUESTION": "red",
"I-ANSWER": "green",
}
def iob_to_label(label):
label = label[2:]
if not label:
return "other"
return label
# draw results onto the image
def draw_boxes(image, boxes, predictions):
width, height = image.size
normalizes_boxes = [unnormalize_box(box, width, height) for box in boxes]
# draw predictions over the image
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
for prediction, box in zip(predictions, normalizes_boxes):
if prediction == "O":
continue
draw.rectangle(box, outline="black")
draw.rectangle(box, outline=label2color[prediction])
draw.text((box[0] + 10, box[1] - 10), text=prediction, fill=label2color[prediction], font=font)
return image
def process_image(image):
width, height = image.size
# create model input
encoding = processor(image, return_tensors="pt")
del encoding["pixel_values"]
# run inference
outputs = model(**encoding)
predictions = outputs.logits.argmax(-1).squeeze().tolist()
# get labels
labels = [model.config.id2label[prediction] for prediction in predictions]
if output_image:
return draw_boxes(image, encoding["bbox"][0], labels)
else:
return labels
title = "OCR Document Parser : Information Extraction - Fine Tuned LiLT Language-independent Layout Transformer Model"
description = "Demo for LiLT Language-independent Layout Transformer, a Transformer for state-of-the-art document image understanding tasks. This particular model is fine-tuned on FUNSD, a dataset of manually annotated forms. It annotates the words appearing in the image as QUESTION/ANSWER/HEADER/OTHER. To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'."
article = "<p style='text-align: center'><a href=' https://arxiv.org/abs/2202.13669' target='_blank'> LiLT Language-independent Layout Transformer</a> | <a href='https://github.com/jpwang/lilt' target='_blank'>Github Repo</a></p>"
examples = [["document.png"]]
css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
# css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
# css = ".output_image, .input_image {height: 600px !important}"
css = ".image-preview {height: auto !important;}"
iface = gr.Interface(
fn=process_image,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.outputs.Image(type="pil", label="annotated image"),
title=title,
description=description,
article=article,
examples=examples,
css=css,
enable_queue=True,
)
iface.launch(debug=True)