Spaces:
Runtime error
Runtime error
Upload clip.py
Browse files
clip.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import requests
|
3 |
+
from torch import nn
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
class CLIP(nn.Module):
|
7 |
+
def __init__(self, model_name):
|
8 |
+
super(CLIP, self).__init__()
|
9 |
+
# model name: e.g. openai/clip-vit-base-patch32
|
10 |
+
print ('Initializing CLIP model...')
|
11 |
+
from transformers import CLIPProcessor, CLIPModel
|
12 |
+
self.model = CLIPModel.from_pretrained(model_name)
|
13 |
+
self.model.eval()
|
14 |
+
self.processor = CLIPProcessor.from_pretrained(model_name)
|
15 |
+
from transformers import CLIPTokenizer
|
16 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(model_name)
|
17 |
+
self.cuda_has_been_checked = False
|
18 |
+
print ('CLIP model initialized.')
|
19 |
+
|
20 |
+
def check_cuda(self):
|
21 |
+
self.cuda_available = next(self.model.parameters()).is_cuda
|
22 |
+
self.device = next(self.model.parameters()).get_device()
|
23 |
+
if self.cuda_available:
|
24 |
+
print ('Cuda is available.')
|
25 |
+
print ('Device is {}'.format(self.device))
|
26 |
+
else:
|
27 |
+
print ('Cuda is not available.')
|
28 |
+
print ('Device is {}'.format(self.device))
|
29 |
+
|
30 |
+
@torch.no_grad()
|
31 |
+
def compute_image_representation_from_image_path(self, image_path):
|
32 |
+
if not self.cuda_has_been_checked:
|
33 |
+
self.check_cuda()
|
34 |
+
self.cuda_has_been_checked = True
|
35 |
+
else:
|
36 |
+
pass
|
37 |
+
# image_path: the path of the image
|
38 |
+
image = Image.open(image_path)
|
39 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
40 |
+
pixel_values = inputs['pixel_values']
|
41 |
+
if self.cuda_available:
|
42 |
+
pixel_values = pixel_values.cuda(self.device)
|
43 |
+
visual_outputs = self.model.vision_model(pixel_values=pixel_values)
|
44 |
+
image_embeds = visual_outputs[1]
|
45 |
+
image_embeds = self.model.visual_projection(image_embeds) # [1 x embed_dim]
|
46 |
+
return image_embeds
|
47 |
+
|
48 |
+
def compute_image_representation_from_image_instance(self, image):
|
49 |
+
if not self.cuda_has_been_checked:
|
50 |
+
self.check_cuda()
|
51 |
+
self.cuda_has_been_checked = True
|
52 |
+
else:
|
53 |
+
pass
|
54 |
+
# image_path: the path of the image
|
55 |
+
inputs = self.processor(images=image, return_tensors="pt")
|
56 |
+
pixel_values = inputs['pixel_values']
|
57 |
+
if self.cuda_available:
|
58 |
+
pixel_values = pixel_values.cuda(self.device)
|
59 |
+
visual_outputs = self.model.vision_model(pixel_values=pixel_values)
|
60 |
+
image_embeds = visual_outputs[1]
|
61 |
+
image_embeds = self.model.visual_projection(image_embeds) # [1 x embed_dim]
|
62 |
+
return image_embeds
|
63 |
+
|
64 |
+
def compute_text_representation(self, text_list):
|
65 |
+
if not self.cuda_has_been_checked:
|
66 |
+
self.check_cuda()
|
67 |
+
self.cuda_has_been_checked = True
|
68 |
+
else:
|
69 |
+
pass
|
70 |
+
# text_list: a list of text
|
71 |
+
text_inputs = self.tokenizer(text_list, padding=True, return_tensors="pt",
|
72 |
+
max_length=self.tokenizer.max_len_single_sentence + 2, truncation=True)
|
73 |
+
# self.tokenizer.max_len_single_sentence + 2 = 77
|
74 |
+
input_ids, attention_mask = text_inputs['input_ids'], text_inputs['attention_mask']
|
75 |
+
if self.cuda_available:
|
76 |
+
input_ids = input_ids.cuda(self.device)
|
77 |
+
attention_mask = attention_mask.cuda(self.device)
|
78 |
+
text_outputs = self.model.text_model(
|
79 |
+
input_ids=input_ids,
|
80 |
+
attention_mask=attention_mask
|
81 |
+
)
|
82 |
+
text_embeds = text_outputs[1]
|
83 |
+
text_embeds = self.model.text_projection(text_embeds)
|
84 |
+
return text_embeds
|
85 |
+
|
86 |
+
def compute_image_text_similarity_via_embeddings(self, image_embeds, text_embeds):
|
87 |
+
'''
|
88 |
+
image_embeds: 1 x embed_dim
|
89 |
+
text_embeds: len(text_list) x embed_dim
|
90 |
+
'''
|
91 |
+
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True)
|
92 |
+
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
|
93 |
+
logit_scale = self.model.logit_scale.exp()
|
94 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
95 |
+
logits_per_image = logits_per_text.T
|
96 |
+
return logits_per_image.softmax(dim=1), logits_per_image/logit_scale # 1 x len(text_list)
|
97 |
+
|
98 |
+
def compute_image_text_similarity_via_raw_text(self, image_embeds, text_list):
|
99 |
+
text_embeds = self.compute_text_representation(text_list)
|
100 |
+
return self.compute_image_text_similarity_via_embeddings(image_embeds, text_embeds)
|
101 |
+
|
102 |
+
### -------------------- functions for building index ---------------------- ###
|
103 |
+
def compute_batch_index_image_features(self, image_list):
|
104 |
+
'''
|
105 |
+
# list of image instances
|
106 |
+
'''
|
107 |
+
if not self.cuda_has_been_checked:
|
108 |
+
self.check_cuda()
|
109 |
+
self.cuda_has_been_checked = True
|
110 |
+
else:
|
111 |
+
pass
|
112 |
+
# image_path: the path of the image
|
113 |
+
inputs = self.processor(images=image_list, return_tensors="pt")
|
114 |
+
pixel_values = inputs['pixel_values']
|
115 |
+
if self.cuda_available:
|
116 |
+
pixel_values = pixel_values.cuda(self.device)
|
117 |
+
visual_outputs = self.model.vision_model(pixel_values=pixel_values)
|
118 |
+
image_embeds = visual_outputs[1]
|
119 |
+
image_embeds = self.model.visual_projection(image_embeds) # [1 x embed_dim]
|
120 |
+
return image_embeds # len(image_list) x embed_dim
|
121 |
+
|
122 |
+
def compute_batch_index_text_representation(self, text_list):
|
123 |
+
if not self.cuda_has_been_checked:
|
124 |
+
self.check_cuda()
|
125 |
+
self.cuda_has_been_checked = True
|
126 |
+
else:
|
127 |
+
pass
|
128 |
+
# text_list: a list of text
|
129 |
+
#text_inputs = self.tokenizer(text_list, padding=True, return_tensors="pt")
|
130 |
+
text_inputs = self.tokenizer(text_list, padding=True, return_tensors="pt",
|
131 |
+
max_length=self.tokenizer.max_len_single_sentence + 2, truncation=True)
|
132 |
+
input_ids, attention_mask = text_inputs['input_ids'], text_inputs['attention_mask']
|
133 |
+
if self.cuda_available:
|
134 |
+
input_ids = input_ids.cuda(self.device)
|
135 |
+
attention_mask = attention_mask.cuda(self.device)
|
136 |
+
text_outputs = self.model.text_model(
|
137 |
+
input_ids=input_ids,
|
138 |
+
attention_mask=attention_mask
|
139 |
+
)
|
140 |
+
text_embeds = text_outputs[1]
|
141 |
+
text_embeds = self.model.text_projection(text_embeds)
|
142 |
+
return text_embeds
|
143 |
+
#logit_scale = self.model.logit_scale.exp()
|
144 |
+
#text_embeds = text_embeds * logit_scale
|
145 |
+
#return text_embeds
|
146 |
+
|