Spaces:
Build error
Build error
import itertools | |
import json | |
import linecache | |
import math | |
import os | |
import pickle | |
import socket | |
from logging import getLogger | |
from pathlib import Path | |
from typing import Callable, Dict, Iterable, List, Tuple, Union | |
import git | |
import numpy as np | |
import torch | |
import torch.distributed as dist | |
from rouge_score import rouge_scorer, scoring | |
from sacrebleu import corpus_bleu | |
from torch import nn | |
from torch.utils.data import Dataset, Sampler | |
from sentence_splitter import add_newline_to_end_of_each_sentence | |
from transformers import BartTokenizer, EvalPrediction, PreTrainedTokenizer, T5Tokenizer | |
from transformers.file_utils import cached_property | |
try: | |
from transformers.modeling_bart import shift_tokens_right | |
except: | |
from transformers.models.bart.modeling_bart import shift_tokens_right | |
try: | |
from fairseq.data.data_utils import batch_by_size | |
FAIRSEQ_AVAILABLE = True | |
except (ImportError, ModuleNotFoundError): | |
FAIRSEQ_AVAILABLE = False | |
def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100): | |
"""From fairseq""" | |
if target.dim() == lprobs.dim() - 1: | |
target = target.unsqueeze(-1) | |
nll_loss = -lprobs.gather(dim=-1, index=target) | |
smooth_loss = -lprobs.sum(dim=-1, keepdim=True) | |
if ignore_index is not None: | |
pad_mask = target.eq(ignore_index) | |
nll_loss.masked_fill_(pad_mask, 0.0) | |
smooth_loss.masked_fill_(pad_mask, 0.0) | |
else: | |
nll_loss = nll_loss.squeeze(-1) | |
smooth_loss = smooth_loss.squeeze(-1) | |
nll_loss = nll_loss.sum() # mean()? Scared to break other math. | |
smooth_loss = smooth_loss.sum() | |
eps_i = epsilon / lprobs.size(-1) | |
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss | |
return loss, nll_loss | |
def lmap(f: Callable, x: Iterable) -> List: | |
"""list(map(f, x))""" | |
return list(map(f, x)) | |
def calculate_bleu(output_lns, refs_lns, **kwargs) -> dict: | |
"""Uses sacrebleu's corpus_bleu implementation.""" | |
return {"bleu": round(corpus_bleu(output_lns, [refs_lns], **kwargs).score, 4)} | |
def build_compute_metrics_fn(task_name: str, tokenizer: PreTrainedTokenizer) -> Callable[[EvalPrediction], Dict]: | |
def non_pad_len(tokens: np.ndarray) -> int: | |
return np.count_nonzero(tokens != tokenizer.pad_token_id) | |
def decode_pred(pred: EvalPrediction) -> Tuple[List[str], List[str]]: | |
pred_str = tokenizer.batch_decode(pred.predictions, skip_special_tokens=True) | |
label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True) | |
pred_str = lmap(str.strip, pred_str) | |
label_str = lmap(str.strip, label_str) | |
return pred_str, label_str | |
def summarization_metrics(pred: EvalPrediction) -> Dict: | |
pred_str, label_str = decode_pred(pred) | |
rouge: Dict = calculate_rouge(pred_str, label_str) | |
summ_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1) | |
rouge.update({"gen_len": summ_len}) | |
return rouge | |
def translation_metrics(pred: EvalPrediction) -> Dict: | |
pred_str, label_str = decode_pred(pred) | |
bleu: Dict = calculate_bleu(pred_str, label_str) | |
gen_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1) | |
bleu.update({"gen_len": gen_len}) | |
return bleu | |
compute_metrics_fn = summarization_metrics if "summarization" in task_name else translation_metrics | |
return compute_metrics_fn | |
def trim_batch( | |
input_ids, | |
pad_token_id, | |
attention_mask=None, | |
): | |
"""Remove columns that are populated exclusively by pad_token_id""" | |
keep_column_mask = input_ids.ne(pad_token_id).any(dim=0) | |
if attention_mask is None: | |
return input_ids[:, keep_column_mask] | |
else: | |
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) | |
class AbstractSeq2SeqDataset(Dataset): | |
def __init__( | |
self, | |
tokenizer, | |
data_dir, | |
max_source_length, | |
max_target_length, | |
type_path="train", | |
n_obs=None, | |
prefix="", | |
**dataset_kwargs | |
): | |
super().__init__() | |
self.src_file = Path(data_dir).joinpath(type_path + ".source") | |
self.tgt_file = Path(data_dir).joinpath(type_path + ".target") | |
self.len_file = Path(data_dir).joinpath(type_path + ".len") | |
if os.path.exists(self.len_file): | |
self.src_lens = pickle_load(self.len_file) | |
self.used_char_len = False | |
else: | |
self.src_lens = self.get_char_lens(self.src_file) | |
self.used_char_len = True | |
self.max_source_length = max_source_length | |
self.max_target_length = max_target_length | |
assert min(self.src_lens) > 0, f"found empty line in {self.src_file}" | |
self.tokenizer = tokenizer | |
self.prefix = prefix if prefix is not None else "" | |
if n_obs is not None: | |
self.src_lens = self.src_lens[:n_obs] | |
self.pad_token_id = self.tokenizer.pad_token_id | |
self.dataset_kwargs = dataset_kwargs | |
dataset_kwargs.update({"add_prefix_space": True} if isinstance(self.tokenizer, BartTokenizer) else {}) | |
def __len__(self): | |
return len(self.src_lens) | |
def get_char_lens(data_file): | |
return [len(x) for x in Path(data_file).open().readlines()] | |
def tgt_lens(self): | |
"""Length in characters of target documents""" | |
return self.get_char_lens(self.tgt_file) | |
def make_sortish_sampler(self, batch_size, distributed=False, shuffle=True, **kwargs): | |
if distributed: | |
return DistributedSortishSampler(self, batch_size, shuffle=shuffle, **kwargs) | |
else: | |
return SortishSampler(self.src_lens, batch_size, shuffle=shuffle) | |
def make_dynamic_sampler(self, max_tokens_per_batch=1024, **kwargs): | |
assert FAIRSEQ_AVAILABLE, "Dynamic batch size requires `pip install fairseq`" | |
assert not self.used_char_len, "You must call python make_len_file.py before calling make_dynamic_sampler" | |
sorted_indices = list(self.make_sortish_sampler(1024, shuffle=False)) | |
def num_tokens_in_example(i): | |
return min(self.src_lens[i], self.max_target_length) | |
# call fairseq cython function | |
batch_sampler: List[List[int]] = batch_by_size( | |
sorted_indices, | |
num_tokens_fn=num_tokens_in_example, | |
max_tokens=max_tokens_per_batch, | |
required_batch_size_multiple=64, | |
) | |
shuffled_batches = [batch_sampler[i] for i in np.random.permutation(range(len(batch_sampler)))] | |
# move the largest batch to the front to OOM quickly (uses an approximation for padding) | |
approximate_toks_per_batch = [max(self.src_lens[i] for i in batch) * len(batch) for batch in shuffled_batches] | |
largest_batch_idx = np.argmax(approximate_toks_per_batch) | |
shuffled_batches[0], shuffled_batches[largest_batch_idx] = ( | |
shuffled_batches[largest_batch_idx], | |
shuffled_batches[0], | |
) | |
return shuffled_batches | |
def __getitem__(self, item): | |
raise NotImplementedError("You must implement this") | |
def collate_fn(self, batch): | |
raise NotImplementedError("You must implement this") | |
class LegacySeq2SeqDataset(AbstractSeq2SeqDataset): | |
def __getitem__(self, index) -> Dict[str, torch.Tensor]: | |
"""Call tokenizer on src and tgt_lines""" | |
index = index + 1 # linecache starts at 1 | |
source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n") | |
tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n") | |
assert source_line, f"empty source line for index {index}" | |
assert tgt_line, f"empty tgt line for index {index}" | |
source_inputs = self.encode_line(self.tokenizer, source_line, self.max_source_length) | |
target_inputs = self.encode_line(self.tokenizer, tgt_line, self.max_target_length) | |
source_ids = source_inputs["input_ids"].squeeze() | |
target_ids = target_inputs["input_ids"].squeeze() | |
src_mask = source_inputs["attention_mask"].squeeze() | |
return { | |
"input_ids": source_ids, | |
"attention_mask": src_mask, | |
"labels": target_ids, | |
} | |
def encode_line(self, tokenizer, line, max_length, pad_to_max_length=True, return_tensors="pt"): | |
"""Only used by LegacyDataset""" | |
return tokenizer( | |
[line], | |
max_length=max_length, | |
padding="max_length" if pad_to_max_length else None, | |
truncation=True, | |
return_tensors=return_tensors, | |
**self.dataset_kwargs, | |
) | |
def collate_fn(self, batch) -> Dict[str, torch.Tensor]: | |
input_ids = torch.stack([x["input_ids"] for x in batch]) | |
masks = torch.stack([x["attention_mask"] for x in batch]) | |
target_ids = torch.stack([x["labels"] for x in batch]) | |
pad_token_id = self.pad_token_id | |
y = trim_batch(target_ids, pad_token_id) | |
source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks) | |
batch = { | |
"input_ids": source_ids, | |
"attention_mask": source_mask, | |
"labels": y, | |
} | |
return batch | |
class Seq2SeqDataset(AbstractSeq2SeqDataset): | |
"""A dataset that calls prepare_seq2seq_batch.""" | |
def __getitem__(self, index) -> Dict[str, str]: | |
index = index + 1 # linecache starts at 1 | |
source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n") | |
tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n") | |
assert source_line, f"empty source line for index {index}" | |
assert tgt_line, f"empty tgt line for index {index}" | |
return {"tgt_texts": tgt_line, "src_texts": source_line, "id": index - 1} | |
def collate_fn(self, batch) -> Dict[str, torch.Tensor]: | |
"""Call prepare_seq2seq_batch.""" | |
batch_encoding: Dict[str, torch.Tensor] = self.tokenizer.prepare_seq2seq_batch( | |
[x["src_texts"] for x in batch], | |
tgt_texts=[x["tgt_texts"] for x in batch], | |
max_length=self.max_source_length, | |
max_target_length=self.max_target_length, | |
return_tensors="pt", | |
**self.dataset_kwargs, | |
).data | |
batch_encoding["ids"] = torch.tensor([x["id"] for x in batch]) | |
return batch_encoding | |
class UniQASeq2SeqDataset(AbstractSeq2SeqDataset): | |
"""A dataset that calls prepare_seq2seq_batch.""" | |
def __getitem__(self, index) -> Dict[str, str]: | |
index = index + 1 # linecache starts at 1 | |
source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n").replace('</s>', '\n') | |
tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n") | |
assert source_line, f"empty source line for index {index}" | |
assert tgt_line, f"empty tgt line for index {index}" | |
return {"tgt_texts": tgt_line, "src_texts": source_line, "id": index - 1} | |
def collate_fn(self, batch) -> Dict[str, torch.Tensor]: | |
"""Call prepare_seq2seq_batch.""" | |
batch_encoding: Dict[str, torch.Tensor] = self.tokenizer.prepare_seq2seq_batch( | |
[x["src_texts"] for x in batch], | |
tgt_texts=[x["tgt_texts"] for x in batch], | |
max_length=self.max_source_length, | |
max_target_length=self.max_target_length, | |
return_tensors="pt", | |
**self.dataset_kwargs, | |
).data | |
batch_encoding["ids"] = torch.tensor([x["id"] for x in batch]) | |
return batch_encoding | |
class Seq2SeqDataCollator: | |
def __init__(self, tokenizer, data_args, tpu_num_cores=None): | |
self.tokenizer = tokenizer | |
self.pad_token_id = tokenizer.pad_token_id | |
assert ( | |
self.pad_token_id is not None | |
), f"pad_token_id is not defined for ({self.tokenizer.__class__.__name__}), it must be defined." | |
self.data_args = data_args | |
self.tpu_num_cores = tpu_num_cores | |
self.dataset_kwargs = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) else {} | |
if data_args.src_lang is not None: | |
self.dataset_kwargs["src_lang"] = data_args.src_lang | |
if data_args.tgt_lang is not None: | |
self.dataset_kwargs["tgt_lang"] = data_args.tgt_lang | |
def __call__(self, batch) -> Dict[str, torch.Tensor]: | |
if hasattr(self.tokenizer, "prepare_seq2seq_batch"): | |
batch = self._encode(batch) | |
input_ids, attention_mask, labels = ( | |
batch["input_ids"], | |
batch["attention_mask"], | |
batch["labels"], | |
) | |
else: | |
input_ids = torch.stack([x["input_ids"] for x in batch]) | |
attention_mask = torch.stack([x["attention_mask"] for x in batch]) | |
labels = torch.stack([x["labels"] for x in batch]) | |
labels = trim_batch(labels, self.pad_token_id) | |
input_ids, attention_mask = trim_batch(input_ids, self.pad_token_id, attention_mask=attention_mask) | |
if isinstance(self.tokenizer, T5Tokenizer): | |
decoder_input_ids = self._shift_right_t5(labels) | |
else: | |
decoder_input_ids = shift_tokens_right(labels, self.pad_token_id) | |
batch = { | |
"input_ids": input_ids, | |
"attention_mask": attention_mask, | |
"decoder_input_ids": decoder_input_ids, | |
"labels": labels, | |
} | |
return batch | |
def _shift_right_t5(self, input_ids): | |
# shift inputs to the right | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
shifted_input_ids[..., 0] = self.pad_token_id | |
return shifted_input_ids | |
def _encode(self, batch) -> Dict[str, torch.Tensor]: | |
batch_encoding = self.tokenizer.prepare_seq2seq_batch( | |
[x["src_texts"] for x in batch], | |
tgt_texts=[x["tgt_texts"] for x in batch], | |
max_length=self.data_args.max_source_length, | |
max_target_length=self.data_args.max_target_length, | |
padding="max_length" if self.tpu_num_cores is not None else "longest", # TPU hack | |
return_tensors="pt", | |
**self.dataset_kwargs, | |
) | |
return batch_encoding.data | |
class SortishSampler(Sampler): | |
"Go through the text data by order of src length with a bit of randomness. From fastai repo." | |
def __init__(self, data, batch_size, shuffle=True): | |
self.data, self.bs, self.shuffle = data, batch_size, shuffle | |
def __len__(self) -> int: | |
return len(self.data) | |
def __iter__(self): | |
return iter(sortish_sampler_indices(self.data, self.bs, shuffle=self.shuffle)) | |
def sortish_sampler_indices(data: List, bs: int, shuffle=True) -> np.array: | |
"Go through the text data by order of src length with a bit of randomness. From fastai repo." | |
if not shuffle: | |
return np.argsort(np.array(data) * -1) | |
def key_fn(i): | |
return data[i] | |
idxs = np.random.permutation(len(data)) | |
sz = bs * 50 | |
ck_idx = [idxs[i : i + sz] for i in range(0, len(idxs), sz)] | |
sort_idx = np.concatenate([sorted(s, key=key_fn, reverse=True) for s in ck_idx]) | |
sz = bs | |
ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)] | |
max_ck = np.argmax([key_fn(ck[0]) for ck in ck_idx]) # find the chunk with the largest key, | |
ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0] # then make sure it goes first. | |
sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=np.int) | |
sort_idx = np.concatenate((ck_idx[0], sort_idx)) | |
return sort_idx | |
class DistributedSortishSampler(Sampler): | |
"""Copied from torch DistributedSampler""" | |
def __init__(self, dataset, batch_size, num_replicas=None, rank=None, add_extra_examples=True, shuffle=True): | |
if num_replicas is None: | |
if not dist.is_available(): | |
raise RuntimeError("Requires distributed package to be available") | |
num_replicas = dist.get_world_size() | |
if rank is None: | |
if not dist.is_available(): | |
raise RuntimeError("Requires distributed package to be available") | |
rank = dist.get_rank() | |
self.dataset = dataset | |
self.num_replicas = num_replicas | |
self.rank = rank | |
self.epoch = 0 | |
if add_extra_examples: | |
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) | |
self.total_size = self.num_samples * self.num_replicas | |
else: | |
self.total_size = len(dataset) | |
self.num_samples = len(self.available_indices) | |
self.batch_size = batch_size | |
self.add_extra_examples = add_extra_examples | |
self.shuffle = shuffle | |
def __iter__(self) -> Iterable: | |
g = torch.Generator() | |
g.manual_seed(self.epoch) | |
sortish_data = [self.dataset.src_lens[i] for i in self.available_indices] | |
sortish_indices = sortish_sampler_indices(sortish_data, self.batch_size, shuffle=self.shuffle) | |
indices = [self.available_indices[i] for i in sortish_indices] | |
assert len(indices) == self.num_samples | |
return iter(indices) | |
def available_indices(self) -> np.array: | |
indices = list(range(len(self.dataset))) | |
# add extra samples to make it evenly divisible | |
indices += indices[: (self.total_size - len(indices))] | |
assert len(indices) == self.total_size | |
# subsample | |
available_indices = indices[self.rank : self.total_size : self.num_replicas] | |
return available_indices | |
def __len__(self): | |
return self.num_samples | |
def set_epoch(self, epoch): | |
self.epoch = epoch | |
logger = getLogger(__name__) | |
def use_task_specific_params(model, task): | |
"""Update config with summarization specific params.""" | |
task_specific_params = model.config.task_specific_params | |
if task_specific_params is not None: | |
pars = task_specific_params.get(task, {}) | |
logger.info(f"using task specific params for {task}: {pars}") | |
model.config.update(pars) | |
def pickle_load(path): | |
"""pickle.load(path)""" | |
with open(path, "rb") as f: | |
return pickle.load(f) | |
def pickle_save(obj, path): | |
"""pickle.dump(obj, path)""" | |
with open(path, "wb") as f: | |
return pickle.dump(obj, f) | |
def flatten_list(summary_ids: List[List]): | |
return [x for x in itertools.chain.from_iterable(summary_ids)] | |
def save_git_info(folder_path: str) -> None: | |
"""Save git information to output_dir/git_log.json""" | |
repo_infos = get_git_info() | |
save_json(repo_infos, os.path.join(folder_path, "git_log.json")) | |
def save_json(content, path, indent=4, **json_dump_kwargs): | |
with open(path, "w") as f: | |
json.dump(content, f, indent=indent, **json_dump_kwargs) | |
def load_json(path): | |
with open(path) as f: | |
return json.load(f) | |
def get_git_info(): | |
try: | |
repo = git.Repo(search_parent_directories=True) | |
repo_infos = { | |
"repo_id": str(repo), | |
"repo_sha": str(repo.head.object.hexsha), | |
"repo_branch": str(repo.active_branch), | |
"hostname": str(socket.gethostname()), | |
} | |
return repo_infos | |
except TypeError: | |
return { | |
"repo_id": None, | |
"repo_sha": None, | |
"repo_branch": None, | |
"hostname": None, | |
} | |
ROUGE_KEYS = ["rouge1", "rouge2", "rougeL", "rougeLsum"] | |
def extract_rouge_mid_statistics(dct): | |
new_dict = {} | |
for k1, v1 in dct.items(): | |
mid = v1.mid | |
new_dict[k1] = {stat: round(getattr(mid, stat), 4) for stat in ["precision", "recall", "fmeasure"]} | |
return new_dict | |
def calculate_rouge( | |
pred_lns: List[str], | |
tgt_lns: List[str], | |
use_stemmer=True, | |
rouge_keys=ROUGE_KEYS, | |
return_precision_and_recall=False, | |
bootstrap_aggregation=True, | |
newline_sep=True, | |
) -> Dict: | |
"""Calculate rouge using rouge_scorer package. | |
Args: | |
pred_lns: list of summaries generated by model | |
tgt_lns: list of groundtruth summaries (e.g. contents of val.target) | |
use_stemmer: Bool indicating whether Porter stemmer should be used to | |
strip word suffixes to improve matching. | |
rouge_keys: which metrics to compute, defaults to rouge1, rouge2, rougeL, rougeLsum | |
return_precision_and_recall: (False) whether to also return precision and recall. | |
bootstrap_aggregation: whether to do the typical bootstrap resampling of scores. Defaults to True, if False | |
this function returns a collections.defaultdict[metric: list of values for each observation for each subscore]`` | |
newline_sep:(default=True) whether to add newline between sentences. This is essential for calculation rougeL | |
on multi sentence summaries (CNN/DM dataset). | |
Returns: | |
Dict[score: value] if aggregate else defaultdict(list) keyed by rouge_keys | |
""" | |
scorer = rouge_scorer.RougeScorer(rouge_keys, use_stemmer=use_stemmer) | |
aggregator = scoring.BootstrapAggregator() | |
for pred, tgt in zip(tgt_lns, pred_lns): | |
# rougeLsum expects "\n" separated sentences within a summary | |
if newline_sep: | |
pred = add_newline_to_end_of_each_sentence(pred) | |
tgt = add_newline_to_end_of_each_sentence(tgt) | |
scores = scorer.score(pred, tgt) | |
aggregator.add_scores(scores) | |
if bootstrap_aggregation: | |
result = aggregator.aggregate() | |
if return_precision_and_recall: | |
return extract_rouge_mid_statistics(result) # here we return dict | |
else: | |
return {k: round(v.mid.fmeasure * 100, 4) for k, v in result.items()} | |
else: | |
return aggregator._scores # here we return defaultdict(list) | |
# Utilities for freezing parameters and checking whether they are frozen | |
def freeze_params(model: nn.Module): | |
"""Set requires_grad=False for each of model.parameters()""" | |
for par in model.parameters(): | |
par.requires_grad = False | |
def freeze_embeds(model): | |
"""Freeze token embeddings and positional embeddings for bart, just token embeddings for t5.""" | |
model_type = model.config.model_type | |
if model_type == "t5": | |
freeze_params(model.shared) | |
for d in [model.encoder, model.decoder]: | |
freeze_params(d.embed_tokens) | |
elif model_type == "fsmt": | |
for d in [model.model.encoder, model.model.decoder]: | |
freeze_params(d.embed_positions) | |
freeze_params(d.embed_tokens) | |
else: | |
freeze_params(model.model.shared) | |
for d in [model.model.encoder, model.model.decoder]: | |
freeze_params(d.embed_positions) | |
freeze_params(d.embed_tokens) | |
def grad_status(model: nn.Module) -> Iterable: | |
return (par.requires_grad for par in model.parameters()) | |
def any_requires_grad(model: nn.Module) -> bool: | |
return any(grad_status(model)) | |
def assert_all_frozen(model): | |
model_grads: List[bool] = list(grad_status(model)) | |
n_require_grad = sum(lmap(int, model_grads)) | |
npars = len(model_grads) | |
assert not any(model_grads), f"{n_require_grad/npars:.1%} of {npars} weights require grad" | |
def assert_not_all_frozen(model): | |
model_grads: List[bool] = list(grad_status(model)) | |
npars = len(model_grads) | |
assert any(model_grads), f"none of {npars} weights require grad" | |
def parse_numeric_n_bool_cl_kwargs(unparsed_args: List[str]) -> Dict[str, Union[int, float, bool]]: | |
""" | |
Parse an argv list of unspecified command line args to a dict. | |
Assumes all values are either numeric or boolean in the form of true/false. | |
""" | |
result = {} | |
assert len(unparsed_args) % 2 == 0, f"got odd number of unparsed args: {unparsed_args}" | |
num_pairs = len(unparsed_args) // 2 | |
for pair_num in range(num_pairs): | |
i = 2 * pair_num | |
assert unparsed_args[i].startswith("--") | |
if unparsed_args[i + 1].lower() == "true": | |
value = True | |
elif unparsed_args[i + 1].lower() == "false": | |
value = False | |
else: | |
try: | |
value = int(unparsed_args[i + 1]) | |
except ValueError: | |
value = float(unparsed_args[i + 1]) # this can raise another informative ValueError | |
result[unparsed_args[i][2:]] = value | |
return result | |
def write_txt_file(ordered_tgt, path): | |
f = Path(path).open("w") | |
for ln in ordered_tgt: | |
f.write(ln + "\n") | |
f.flush() | |
def chunks(lst, n): | |
"""Yield successive n-sized chunks from lst.""" | |
for i in range(0, len(lst), n): | |
yield lst[i : i + n] | |
def check_output_dir(args, expected_items=0): | |
""" | |
Checks whether to bail out if output_dir already exists and has more than expected_items in it | |
`args`: needs to have the following attributes of `args`: | |
- output_dir | |
- do_train | |
- overwrite_output_dir | |
`expected_items`: normally 0 (default) - i.e. empty dir, but in some cases a few files are expected (e.g. recovery from OOM) | |
""" | |
if ( | |
os.path.exists(args.output_dir) | |
and len(os.listdir(args.output_dir)) > expected_items | |
and args.do_train | |
and not args.overwrite_output_dir | |
): | |
raise ValueError( | |
f"Output directory ({args.output_dir}) already exists and " | |
f"has {len(os.listdir(args.output_dir))} items in it (expected {expected_items} items). " | |
"Use --overwrite_output_dir to overcome." | |
) | |