Spaces:
Build error
Build error
import logging | |
import os | |
import sys | |
from dataclasses import dataclass, field | |
from typing import Optional | |
from seq2seq_trainer import Seq2SeqTrainer | |
from seq2seq_training_args import Seq2SeqTrainingArguments | |
from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, set_seed | |
from transformers.trainer_utils import EvaluationStrategy | |
from seq2seq_utils import ( | |
Seq2SeqDataCollator, | |
Seq2SeqDataset, | |
assert_all_frozen, | |
build_compute_metrics_fn, | |
check_output_dir, | |
freeze_embeds, | |
freeze_params, | |
lmap, | |
save_json, | |
use_task_specific_params, | |
write_txt_file, | |
) | |
logger = logging.getLogger(__name__) | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
""" | |
model_name_or_path: str = field( | |
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | |
) | |
freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."}) | |
freeze_embeds: bool = field(default=False, metadata={"help": "Whether to freeze the embeddings."}) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
data_dir: str = field( | |
metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} | |
) | |
task: Optional[str] = field( | |
default="summarization", | |
metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"}, | |
) | |
max_source_length: Optional[int] = field( | |
default=1024, | |
metadata={ | |
"help": "The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
}, | |
) | |
max_target_length: Optional[int] = field( | |
default=128, | |
metadata={ | |
"help": "The maximum total sequence length for target text after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
}, | |
) | |
val_max_target_length: Optional[int] = field( | |
default=142, | |
metadata={ | |
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
}, | |
) | |
test_max_target_length: Optional[int] = field( | |
default=142, | |
metadata={ | |
"help": "The maximum total sequence length for test target text after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
}, | |
) | |
n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."}) | |
n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."}) | |
n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."}) | |
src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."}) | |
tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."}) | |
eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."}) | |
ignore_pad_token_for_loss: bool = field( | |
default=True, | |
metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."}, | |
) | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
check_output_dir(training_args) | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, | |
) | |
logger.warning( | |
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
training_args.local_rank, | |
training_args.device, | |
training_args.n_gpu, | |
bool(training_args.local_rank != -1), | |
training_args.fp16, | |
) | |
logger.info("Training/evaluation parameters %s", training_args) | |
# Set seed | |
set_seed(training_args.seed) | |
# Load pretrained model and tokenizer | |
# | |
# Distributed training: | |
# The .from_pretrained methods guarantee that only one local process can concurrently | |
# download model & vocab. | |
config = AutoConfig.from_pretrained( | |
model_args.config_name if model_args.config_name else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
) | |
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") | |
for p in extra_model_params: | |
if getattr(training_args, p, None): | |
assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" | |
setattr(config, p, getattr(training_args, p)) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | |
cache_dir=model_args.cache_dir, | |
) | |
model = AutoModelForSeq2SeqLM.from_pretrained( | |
model_args.model_name_or_path, | |
from_tf=".ckpt" in model_args.model_name_or_path, | |
config=config, | |
cache_dir=model_args.cache_dir, | |
) | |
# use task specific params | |
use_task_specific_params(model, data_args.task) | |
# set num_beams for evaluation | |
if data_args.eval_beams is None: | |
data_args.eval_beams = model.config.num_beams | |
# set decoder_start_token_id for MBart | |
if model.config.decoder_start_token_id is None and isinstance(tokenizer, MBartTokenizer): | |
assert ( | |
data_args.tgt_lang is not None and data_args.src_lang is not None | |
), "mBart requires --tgt_lang and --src_lang" | |
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang] | |
if model_args.freeze_embeds: | |
freeze_embeds(model) | |
if model_args.freeze_encoder: | |
freeze_params(model.get_encoder()) | |
assert_all_frozen(model.get_encoder()) | |
dataset_class = Seq2SeqDataset | |
# Get datasets | |
train_dataset = ( | |
dataset_class( | |
tokenizer, | |
type_path="train", | |
data_dir=data_args.data_dir, | |
n_obs=data_args.n_train, | |
max_target_length=data_args.max_target_length, | |
max_source_length=data_args.max_source_length, | |
prefix=model.config.prefix or "", | |
) | |
if training_args.do_train | |
else None | |
) | |
eval_dataset = ( | |
dataset_class( | |
tokenizer, | |
type_path="val", | |
data_dir=data_args.data_dir, | |
n_obs=data_args.n_val, | |
max_target_length=data_args.val_max_target_length, | |
max_source_length=data_args.max_source_length, | |
prefix=model.config.prefix or "", | |
) | |
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO | |
else None | |
) | |
test_dataset = ( | |
dataset_class( | |
tokenizer, | |
type_path="test", | |
data_dir=data_args.data_dir, | |
n_obs=data_args.n_test, | |
max_target_length=data_args.test_max_target_length, | |
max_source_length=data_args.max_source_length, | |
prefix=model.config.prefix or "", | |
) | |
if training_args.do_predict | |
else None | |
) | |
# Initialize our Trainer | |
compute_metrics_fn = ( | |
build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None | |
) | |
trainer = Seq2SeqTrainer( | |
model=model, | |
config=config, | |
args=training_args, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
data_collator=Seq2SeqDataCollator(tokenizer, data_args, training_args.tpu_num_cores), | |
compute_metrics=compute_metrics_fn, | |
data_args=data_args, | |
) | |
# Training | |
if training_args.do_train: | |
trainer.train( | |
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None | |
) | |
trainer.save_model() | |
# For convenience, we also re-save the tokenizer to the same directory, | |
# so that you can share your model easily on huggingface.co/models =) | |
if trainer.is_world_process_zero(): | |
trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json")) | |
tokenizer.save_pretrained(training_args.output_dir) | |
# Evaluation | |
eval_results = {} | |
if training_args.do_eval: | |
logger.info("*** Evaluate ***") | |
result = trainer.evaluate() | |
if trainer.is_world_process_zero(): | |
logger.info("***** Eval results *****") | |
for key, value in result.items(): | |
logger.info(" %s = %s", key, value) | |
save_json(result, os.path.join(training_args.output_dir, "eval_results.json")) | |
eval_results.update(result) | |
if training_args.do_predict: | |
logging.info("*** Test ***") | |
test_output = trainer.predict(test_dataset=test_dataset) | |
test_metrics = {k.replace("eval", "test"): v for k, v in test_output.metrics.items()} | |
if trainer.is_world_process_zero(): | |
logger.info("***** Test results *****") | |
for key, value in test_metrics.items(): | |
logger.info(" %s = %s", key, value) | |
save_json(test_metrics, os.path.join(training_args.output_dir, "test_results.json")) | |
eval_results.update(test_metrics) | |
if training_args.predict_with_generate: | |
test_preds = tokenizer.batch_decode( | |
test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True | |
) | |
test_preds = lmap(str.strip, test_preds) | |
write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt")) | |
if trainer.is_world_process_zero(): | |
save_json(eval_results, "all_results.json") | |
return eval_results | |
def _mp_fn(index): | |
# For xla_spawn (TPUs) | |
main() | |
if __name__ == "__main__": | |
main() | |