Auction-Arena-Demo / src /bidder_base.py
jiangjiechen's picture
init app
8acb22e
raw
history blame
42.1 kB
from typing import List
from langchain.base_language import BaseLanguageModel
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
from langchain.chat_models import (
ChatAnthropic,
ChatOpenAI,
ChatVertexAI,
ChatGooglePalm,
)
import vertexai
from langchain.input import get_colored_text
from langchain.callbacks import get_openai_callback
from collections import defaultdict
from pydantic import BaseModel
import queue
import threading
import os
import random
import time
import ujson as json
import matplotlib.pyplot as plt
from .item_base import Item, item_list_equal
from .prompt_base import (
AUCTION_HISTORY,
# INSTRUCT_OBSERVE_TEMPLATE,
_LEARNING_STATEMENT,
INSTRUCT_PLAN_TEMPLATE,
INSTRUCT_BID_TEMPLATE,
INSTRUCT_SUMMARIZE_TEMPLATE,
INSTRUCT_LEARNING_TEMPLATE,
INSTRUCT_REPLAN_TEMPLATE,
SYSTEM_MESSAGE,
)
import sys
sys.path.append('..')
from utils import LoadJsonL, extract_jsons_from_text, extract_numbered_list, trace_back
# DESIRE_DESC = {
# 'default': "Your goal is to fully utilize your budget while actively participating in the auction",
# 'maximize_profit': "Your goal is to maximize your overall profit, and fully utilize your budget while actively participating in the auction. This involves strategic bidding to win items for less than their true value, thereby ensuring the difference between the price paid and the item's value is as large as possible",
# 'maximize_items': "Your goal is to win as many items as possible, and fully utilize your budget while actively participating in the auction. While keeping your budget in mind, you should aim to participate broadly across different items, striving to be the highest bidder more often than not",
# } # remove period at the end of each description
DESIRE_DESC = {
'maximize_profit': "Your primary objective is to secure the highest profit at the end of this auction, compared to all other bidders",
'maximize_items': "Your primary objective is to win the highest number of items at the end of this auction, compared to everyone else",
}
class Bidder(BaseModel):
name: str
model_name: str
budget: int
desire: str
plan_strategy: str
temperature: float = 0.7
overestimate_percent: int = 10
correct_belief: bool
enable_learning: bool = False
llm: BaseLanguageModel = None
openai_cost = 0
llm_token_count = 0
verbose: bool = False
auction_hash: str = ''
system_message: str = ''
original_budget: int = 0
# working memory
profit: int = 0
cur_item_id = 0
items: list = []
dialogue_history: list = [] # for gradio UI display
llm_prompt_history: list = [] # for tracking llm calling
items_won = []
bid_history: list = [] # history of the bidding of a single item
plan_instruct: str = '' # instruction for planning
cur_plan: str = '' # current plan
status_quo: dict = {} # belief of budget and profit, self and others
withdraw: bool = False # state of withdraw
learnings: str = '' # learnings from previous biddings. If given, then use it to guide the rest of the auction.
max_bid_cnt: int = 4 # Rule Bidder: maximum number of bids on one item (K = 1 starting bid + K-1 increase bid)
rule_bid_cnt: int = 0 # Rule Bidder: count of bids on one item
# belief tracking
failed_bid_cnt: int = 0 # count of failed bids (overspending)
total_bid_cnt: int = 0 # count of total bids
self_belief_error_cnt: int = 0
total_self_belief_cnt: int = 0
other_belief_error_cnt: int = 0
total_other_belief_cnt: int = 0
engagement_count: int = 0
budget_history = []
profit_history = []
budget_error_history = []
profit_error_history = []
win_bid_error_history = []
engagement_history = defaultdict(int)
all_bidders_status = {} # track others' profit
changes_of_plan = []
# not used
input_box: str = None
need_input = False
semaphore = 0
class Config:
arbitrary_types_allowed = True
def __repr__(self):
return self.name
def __str__(self):
return self.name
@classmethod
def create(cls, **data):
instance = cls(**data)
instance._post_init()
return instance
def _post_init(self):
self.original_budget = self.budget
self.system_message = SYSTEM_MESSAGE.format(
name=self.name,
desire_desc=DESIRE_DESC[self.desire],
)
self._parse_llm()
self.dialogue_history += [
SystemMessage(content=self.system_message),
AIMessage(content='')
]
self.budget_history.append(self.budget)
self.profit_history.append(self.profit)
def _parse_llm(self):
if 'gpt-' in self.model_name:
self.llm = ChatOpenAI(model=self.model_name, temperature=self.temperature, max_retries=30, request_timeout=1200)
elif 'claude' in self.model_name:
self.llm = ChatAnthropic(model=self.model_name, temperature=self.temperature, default_request_timeout=1200)
elif 'bison' in self.model_name:
self.llm = ChatGooglePalm(model_name=f'models/{self.model_name}', temperature=self.temperature)
elif 'rule' in self.model_name or 'human' in self.model_name:
self.llm = None
else:
raise NotImplementedError(self.model_name)
# def _rotate_openai_org(self):
# # use two organizations to avoid rate limit
# if os.environ.get('OPENAI_ORGANIZATION_1') and os.environ.get('OPENAI_ORGANIZATION_2'):
# return random.choice([os.environ.get('OPENAI_ORGANIZATION_1'), os.environ.get('OPENAI_ORGANIZATION_2')])
# else:
# return None
def _run_llm_standalone(self, messages: list):
with get_openai_callback() as cb:
for i in range(6):
try:
input_token_num = self.llm.get_num_tokens_from_messages(messages)
if 'claude' in self.model_name: # anthropic's claude
result = self.llm(messages, max_tokens_to_sample=2048)
elif 'bison' in self.model_name: # google's palm-2
max_tokens = min(max(3900 - input_token_num, 192), 2048)
if isinstance(self.llm, ChatVertexAI):
result = self.llm(messages, max_output_tokens=max_tokens)
else:
result = self.llm(messages)
elif 'gpt' in self.model_name: # openai
if 'gpt-3.5-turbo' in self.model_name and '16k' not in self.model_name:
max_tokens = max(3900 - input_token_num, 192)
else:
# gpt-4
# self.llm.openai_organization = self._rotate_openai_org()
max_tokens = max(8000 - input_token_num, 192)
result = self.llm(messages, max_tokens=max_tokens)
elif 'llama' in self.model_name.lower():
raise NotImplementedError
else:
raise NotImplementedError
break
except:
print(f'Retrying for {self.model_name} ({i+1}/6), wait for {2**(i+1)} sec...')
time.sleep(2**(i+1))
self.openai_cost += cb.total_cost
self.llm_token_count = self.llm.get_num_tokens_from_messages(messages)
return result.content
def _get_estimated_value(self, item):
value = item.true_value * (1 + self.overestimate_percent / 100)
return int(value)
def _get_cur_item(self, key=None):
if self.cur_item_id < len(self.items):
if key is not None:
return self.items[self.cur_item_id].__dict__[key]
else:
return self.items[self.cur_item_id]
else:
return 'no item left'
def _get_next_item(self, key=None):
if self.cur_item_id + 1 < len(self.items):
if key is not None:
return self.items[self.cur_item_id + 1].__dict__[key]
else:
return self.items[self.cur_item_id + 1]
else:
return 'no item left'
def _get_remaining_items(self, as_str=False):
remain_items = self.items[self.cur_item_id + 1:]
if as_str:
return ', '.join([item.name for item in remain_items])
else:
return remain_items
def _get_items_value_str(self, items: List[Item]):
if not isinstance(items, list):
items = [items]
items_info = ''
for i, item in enumerate(items):
estimated_value = self._get_estimated_value(item)
_info = f"{i+1}. {item}, starting price is ${item.price}. Your estimated value for this item is ${estimated_value}.\n"
items_info += _info
return items_info.strip()
# ********** Main Instructions and Functions ********** #
def learn_from_prev_auction(self, past_learnings, past_auction_log):
if not self.enable_learning or 'rule' in self.model_name or 'human' in self.model_name:
return ''
instruct_learn = INSTRUCT_LEARNING_TEMPLATE.format(
past_auction_log=past_auction_log,
past_learnings=past_learnings)
result = self._run_llm_standalone([HumanMessage(content=instruct_learn)])
self.dialogue_history += [
HumanMessage(content=instruct_learn),
AIMessage(content=result),
]
self.llm_prompt_history.append({
'messages': [{x.type: x.content} for x in [HumanMessage(content=instruct_learn)]],
'result': result,
'tag': 'learn_0'
})
self.learnings = '\n'.join(extract_numbered_list(result))
if self.learnings != '':
self.system_message += f"\n\nHere are your key learning points and practical tips from a previous auction. You can use them to guide this auction:\n```\n{self.learnings}\n```"
if self.verbose:
print(f"Learn from previous auction: {self.name} ({self.model_name}).")
return result
def _choose_items(self, budget, items: List[Item]):
'''
Choose items within budget for rule bidders.
Cheap ones first if maximize_items, expensive ones first if maximize_profit.
'''
sorted_items = sorted(items, key=lambda x: self._get_estimated_value(x),
reverse=self.desire == 'maximize_profit')
chosen_items = []
i = 0
while budget >= 0 and i < len(sorted_items):
item = sorted_items[i]
if item.price <= budget:
chosen_items.append(item)
budget -= item.price
i += 1
return chosen_items
def get_plan_instruct(self, items: List[Item]):
self.items = items
plan_instruct = INSTRUCT_PLAN_TEMPLATE.format(
bidder_name=self.name,
budget=self.budget,
item_num=len(items),
items_info=self._get_items_value_str(items),
desire_desc=DESIRE_DESC[self.desire],
learning_statement='' if not self.enable_learning else _LEARNING_STATEMENT
)
return plan_instruct
def init_plan(self, plan_instruct: str):
'''
Plan for bidding with auctioneer's instruction and items information for customize estimated value.
plan = plan(system_message, instruct_plan)
'''
if 'rule' in self.model_name:
# self.cur_plan = ', '.join([x.name for x in self._choose_items(self.budget, self.items)])
# self.dialogue_history += [
# HumanMessage(content=plan_instruct),
# AIMessage(content=self.cur_plan),
# ]
# return self.cur_plan
return ''
self.status_quo = {
'remaining_budget': self.budget,
'total_profits': {bidder: 0 for bidder in self.all_bidders_status.keys()},
'winning_bids': {bidder: {} for bidder in self.all_bidders_status.keys()},
}
if self.plan_strategy == 'none':
self.plan_instruct = ''
self.cur_plan = ''
return None
system_msg = SystemMessage(content=self.system_message)
plan_msg = HumanMessage(content=plan_instruct)
messages = [system_msg, plan_msg]
result = self._run_llm_standalone(messages)
if self.verbose:
print(get_colored_text(plan_msg.content, 'red'))
print(get_colored_text(result, 'green'))
self.dialogue_history += [
plan_msg,
AIMessage(content=result),
]
self.llm_prompt_history.append({
'messages': [{x.type: x.content} for x in messages],
'result': result,
'tag': 'plan_0'
})
self.cur_plan = result
self.plan_instruct = plan_instruct
self.changes_of_plan.append([
f"{self.cur_item_id} (Initial)",
False,
json.dumps(extract_jsons_from_text(result)[-1]),
])
if self.verbose:
print(f"Plan: {self.name} ({self.model_name}) for {self._get_cur_item()}.")
return result
def get_rebid_instruct(self, auctioneer_msg: str):
self.dialogue_history += [
HumanMessage(content=auctioneer_msg),
AIMessage(content='')
]
return auctioneer_msg
def get_bid_instruct(self, auctioneer_msg: str, bid_round: int):
auctioneer_msg = auctioneer_msg.replace(self.name, f'You ({self.name})')
bid_instruct = INSTRUCT_BID_TEMPLATE.format(
auctioneer_msg=auctioneer_msg,
bidder_name=self.name,
cur_item=self._get_cur_item(),
estimated_value=self._get_estimated_value(self._get_cur_item()),
desire_desc=DESIRE_DESC[self.desire],
learning_statement='' if not self.enable_learning else _LEARNING_STATEMENT
)
if bid_round == 0:
if self.plan_strategy in ['static', 'none']:
# if static planner, then no replanning is needed. status quo is updated in replanning. thus need to add status quo in bid instruct.
bid_instruct = f"""The status quo of this auction so far is:\n"{json.dumps(self.status_quo, indent=4)}"\n\n{bid_instruct}\n---\n"""
else:
bid_instruct = f'Now, the auctioneer says: "{auctioneer_msg}"'
self.dialogue_history += [
HumanMessage(content=bid_instruct),
AIMessage(content='')
]
return bid_instruct
def bid_rule(self, cur_bid: int, min_markup_pct: float = 0.1):
'''
:param cur_bid: current highest bid
:param min_markup_pct: minimum percentage for bid increase
:param max_bid_cnt: maximum number of bids on one item (K = 1 starting bid + K-1 increase bid)
'''
# dialogue history already got bid_instruction.
cur_item = self._get_cur_item()
if cur_bid <= 0:
next_bid = cur_item.price
else:
next_bid = cur_bid + min_markup_pct * cur_item.price
if self.budget - next_bid >= 0 and self.rule_bid_cnt < self.max_bid_cnt:
msg = int(next_bid)
self.rule_bid_cnt += 1
else:
msg = -1
content = f'The current highest bid for {cur_item.name} is ${cur_bid}. '
content += "I'm out!" if msg < 0 else f"I bid ${msg}! (Rule generated)"
self.dialogue_history += [
HumanMessage(content=''),
AIMessage(content=content)
]
return msg
def bid(self, bid_instruct):
'''
Bid for an item with auctioneer's instruction and bidding history.
bid_history = bid(system_message, instruct_plan, plan, bid_history)
'''
if self.model_name == 'rule':
return ''
bid_msg = HumanMessage(content=bid_instruct)
if self.plan_strategy == 'none':
messages = [SystemMessage(content=self.system_message)]
else:
messages = [SystemMessage(content=self.system_message),
HumanMessage(content=self.plan_instruct),
AIMessage(content=self.cur_plan)]
self.bid_history += [bid_msg]
messages += self.bid_history
result = self._run_llm_standalone(messages)
self.bid_history += [AIMessage(content=result)]
self.dialogue_history += [
HumanMessage(content=''),
AIMessage(content=result)
]
self.llm_prompt_history.append({
'messages': [{x.type: x.content} for x in messages],
'result': result,
'tag': f'bid_{self.cur_item_id}'
})
if self.verbose:
print(get_colored_text(bid_instruct, 'yellow'))
print(get_colored_text(result, 'green'))
print(f"Bid: {self.name} ({self.model_name}) for {self._get_cur_item()}.")
self.total_bid_cnt += 1
return result
def get_summarize_instruct(self, bidding_history: str, hammer_msg: str, win_lose_msg: str):
instruct = INSTRUCT_SUMMARIZE_TEMPLATE.format(
cur_item=self._get_cur_item(),
bidding_history=bidding_history,
hammer_msg=hammer_msg.strip(),
win_lose_msg=win_lose_msg.strip(),
bidder_name=self.name,
prev_status=self._status_json_to_text(self.status_quo),
)
return instruct
def summarize(self, instruct_summarize: str):
'''
Update belief/status quo
status_quo = summarize(system_message, bid_history, prev_status + instruct_summarize)
'''
self.budget_history.append(self.budget)
self.profit_history.append(self.profit)
if self.model_name == 'rule':
self.rule_bid_cnt = 0 # reset bid count for rule bidder
return ''
messages = [SystemMessage(content=self.system_message)]
# messages += self.bid_history
summ_msg = HumanMessage(content=instruct_summarize)
messages.append(summ_msg)
status_quo_text = self._run_llm_standalone(messages)
self.dialogue_history += [summ_msg, AIMessage(content=status_quo_text)]
self.bid_history += [summ_msg, AIMessage(content=status_quo_text)]
self.llm_prompt_history.append({
'messages': [{x.type: x.content} for x in messages],
'result': status_quo_text,
'tag': f'summarize_{self.cur_item_id}'
})
cnt = 0
while cnt <= 3:
sanity_msg = self._sanity_check_status_json(extract_jsons_from_text(status_quo_text)[-1])
if sanity_msg == '':
# pass sanity check then track beliefs
consistency_msg = self._belief_tracking(status_quo_text)
else:
sanity_msg = f'- {sanity_msg}'
consistency_msg = ''
if sanity_msg != '' or (consistency_msg != '' and self.correct_belief):
err_msg = f"As {self.name}, here are some error(s) of your summary of the status JSON:\n{sanity_msg.strip()}\n{consistency_msg.strip()}\n\nPlease revise the status JSON based on the errors. Don't apologize. Just give me the revised status JSON.".strip()
# print(f"{self.name}: revising status quo for the {cnt} time:")
# print(get_colored_text(err_msg, 'green'))
# print(get_colored_text(status_quo_text, 'red'))
messages += [AIMessage(content=status_quo_text),
HumanMessage(content=err_msg)]
status_quo_text = self._run_llm_standalone(messages)
self.dialogue_history += [
HumanMessage(content=err_msg),
AIMessage(content=status_quo_text),
]
cnt += 1
else:
break
self.status_quo = extract_jsons_from_text(status_quo_text)[-1]
if self.verbose:
print(get_colored_text(instruct_summarize, 'blue'))
print(get_colored_text(status_quo_text, 'green'))
print(f"Summarize: {self.name} ({self.model_name}) for {self._get_cur_item()}.")
return status_quo_text
def get_replan_instruct(self):
instruct = INSTRUCT_REPLAN_TEMPLATE.format(
status_quo=self._status_json_to_text(self.status_quo),
remaining_items_info=self._get_items_value_str(self._get_remaining_items()),
bidder_name=self.name,
desire_desc=DESIRE_DESC[self.desire],
learning_statement='' if not self.enable_learning else _LEARNING_STATEMENT
)
return instruct
def replan(self, instruct_replan: str):
'''
plan = replan(system_message, instruct_plan, prev_plan, status_quo + (learning) + instruct_replan)
'''
if self.model_name == 'rule':
self.withdraw = False
self.cur_item_id += 1
return ''
if self.plan_strategy in ['none', 'static']:
self.bid_history = [] # clear bid history
self.cur_item_id += 1
self.withdraw = False
return 'Skip replanning for bidders with static or no plan.'
replan_msg = HumanMessage(content=instruct_replan)
messages = [SystemMessage(content=self.system_message),
HumanMessage(content=self.plan_instruct),
AIMessage(content=self.cur_plan)]
messages.append(replan_msg)
result = self._run_llm_standalone(messages)
new_plan_dict = extract_jsons_from_text(result)[-1]
cnt = 0
while len(new_plan_dict) == 0 and cnt < 2:
err_msg = 'Your response does not contain a JSON-format priority list for items. Please revise your plan.'
messages += [
AIMessage(content=result),
HumanMessage(content=err_msg),
]
result = self._run_llm_standalone(messages)
new_plan_dict = extract_jsons_from_text(result)[-1]
self.dialogue_history += [
HumanMessage(content=err_msg),
AIMessage(content=result),
]
cnt += 1
old_plan_dict = extract_jsons_from_text(self.cur_plan)[-1]
self.changes_of_plan.append([
f"{self.cur_item_id + 1} ({self._get_cur_item('name')})",
self._change_of_plan(old_plan_dict, new_plan_dict),
json.dumps(new_plan_dict)
])
self.plan_instruct = instruct_replan
self.cur_plan = result
self.withdraw = False
self.bid_history = [] # clear bid history
self.cur_item_id += 1
self.dialogue_history += [
replan_msg,
AIMessage(content=result),
]
self.llm_prompt_history.append({
'messages': [{x.type: x.content} for x in messages],
'result': result,
'tag': f'plan_{self.cur_item_id}'
})
if self.verbose:
print(get_colored_text(instruct_replan, 'blue'))
print(get_colored_text(result, 'green'))
print(f"Replan: {self.name} ({self.model_name}).")
return result
def _change_of_plan(self, old_plan: dict, new_plan: dict):
for k in new_plan:
if new_plan[k] != old_plan.get(k, None):
return True
return False
# *********** Belief Tracking and Sanity Check *********** #
def bid_sanity_check(self, bid_price, prev_round_max_bid, min_markup_pct):
# can't bid more than budget or less than previous highest bid
if bid_price < 0:
msg = None
else:
min_bid_increase = int(min_markup_pct * self._get_cur_item('price'))
if bid_price > self.budget:
msg = f"you don't have insufficient budget (${self.budget} left)"
elif bid_price < self._get_cur_item('price'):
msg = f"your bid is lower than the starting bid (${self._get_cur_item('price')})"
elif bid_price < prev_round_max_bid + min_bid_increase:
msg = f"you must advance previous highest bid (${prev_round_max_bid}) by at least ${min_bid_increase} ({int(100 * min_markup_pct)}%)."
else:
msg = None
return msg
def rebid_for_failure(self, fail_instruct: str):
result = self.bid(fail_instruct)
self.failed_bid_cnt += 1
return result
def _sanity_check_status_json(self, data: dict):
if data == {}:
return "Error: No parsible JSON in your response. Possibly due to missing a closing curly bracket '}', or unpasible values (e.g., 'profit': 1000 + 400, instead of 'profit': 1400)."
# Check if all expected top-level keys are present
expected_keys = ["remaining_budget", "total_profits", "winning_bids"]
for key in expected_keys:
if key not in data:
return f"Error: Missing '{key}' field in the status JSON."
# Check if "remaining_budget" is a number
if not isinstance(data["remaining_budget"], (int, float)):
return "Error: 'remaining_budget' should be a number, and only about your remaining budget."
# Check if "total_profits" is a dictionary with numbers as values
if not isinstance(data["total_profits"], dict):
return "Error: 'total_profits' should be a dictionary of every bidder."
for bidder, profit in data["total_profits"].items():
if not isinstance(profit, (int, float)):
return f"Error: Profit for {bidder} should be a number."
# Check if "winning_bids" is a dictionary and that each bidder's entry is a dictionary with numbers
if not isinstance(data["winning_bids"], dict):
return "Error: 'winning_bids' should be a dictionary."
for bidder, bids in data["winning_bids"].items():
if not isinstance(bids, dict):
return f"Error: Bids for {bidder} should be a dictionary."
for item, amount in bids.items():
if not isinstance(amount, (int, float)):
return f"Error: Amount for {item} under {bidder} should be a number."
# If everything is fine
return ""
def _status_json_to_text(self, data: dict):
if 'rule' in self.model_name: return ''
# Extract and format remaining budget
structured_text = f"* Remaining Budget: ${data.get('remaining_budget', 'unknown')}\n\n"
# Extract and format total profits for each bidder
structured_text += "* Total Profits:\n"
if data.get('total_profits'):
for bidder, profit in data['total_profits'].items():
structured_text += f" * {bidder}: ${profit}\n"
# Extract and list the winning bids for each item by each bidder
structured_text += "\n* Winning Bids:\n"
if data.get('winning_bids'):
for bidder, bids in data['winning_bids'].items():
structured_text += f" * {bidder}:\n"
if bids:
for item, amount in bids.items():
structured_text += f" * {item}: ${amount}\n"
else:
structured_text += f" * No winning bids\n"
return structured_text.strip()
def _belief_tracking(self, status_text: str):
'''
Parse status quo and check if the belief is correct.
'''
belief_json = extract_jsons_from_text(status_text)[-1]
# {"remaining_budget": 8000, "total_profits": {"Bidder 1": 1300, "Bidder 2": 1800, "Bidder 3": 0}, "winning_bids": {"Bidder 1": {"Item 2": 1200, "Item 3": 1000}, "Bidder 2": {"Item 1": 2000}, "Bidder 3": {}}}
budget_belief = belief_json['remaining_budget']
profits_belief = belief_json['total_profits']
winning_bids = belief_json['winning_bids']
msg = ''
# track belief of budget
self.total_self_belief_cnt += 1
if budget_belief != self.budget:
msg += f'- Your belief of budget is wrong: you have ${self.budget} left, but you think you have ${budget_belief} left.\n'
self.self_belief_error_cnt += 1
self.budget_error_history.append([
self._get_cur_item('name'),
budget_belief,
self.budget,
])
# track belief of profits
for bidder_name, profit in profits_belief.items():
if self.all_bidders_status.get(bidder_name) is None:
# due to a potentially unreasonable parsing
continue
if self.name in bidder_name:
bidder_name = self.name
self.total_self_belief_cnt += 1
else:
self.total_other_belief_cnt += 1
real_profit = self.all_bidders_status[bidder_name]['profit']
if profit != real_profit:
if self.name == bidder_name:
self.self_belief_error_cnt += 1
else:
self.other_belief_error_cnt += 1
msg += f'- Your belief of total profit of {bidder_name} is wrong: {bidder_name} has earned ${real_profit} so far, but you think {bidder_name} has earned ${profit}.\n'
# add to history
self.profit_error_history.append([
f"{bidder_name} ({self._get_cur_item('name')})",
profit,
real_profit
])
# track belief of winning bids
for bidder_name, items_won_dict in winning_bids.items():
if self.all_bidders_status.get(bidder_name) is None:
# due to a potentially unreasonable parsing
continue
real_items_won = self.all_bidders_status[bidder_name]['items_won']
# items_won = [(item, bid_price), ...)]
items_won_list = list(items_won_dict.keys())
real_items_won_list = [str(x) for x, _ in real_items_won]
if self.name in bidder_name:
self.total_self_belief_cnt += 1
else:
self.total_other_belief_cnt += 1
if not item_list_equal(items_won_list, real_items_won_list):
if bidder_name == self.name:
self.self_belief_error_cnt += 1
_bidder_name = f'you'
else:
self.other_belief_error_cnt += 1
_bidder_name = bidder_name
msg += f"- Your belief of winning items of {bidder_name} is wrong: {bidder_name} won {real_items_won}, but you think {bidder_name} won {items_won_dict}.\n"
self.win_bid_error_history.append([
f"{_bidder_name} ({self._get_cur_item('name')})",
', '.join(items_won_list),
', '.join(real_items_won_list)
])
return msg
def win_bid(self, item: Item, bid: int):
self.budget -= bid
self.profit += item.true_value - bid
self.items_won += [[item, bid]]
msg = f"Congratuations! You won {item} at ${bid}."# Now you have ${self.budget} left. Your total profit so far is ${self.profit}."
return msg
def lose_bid(self, item: Item):
return f"You lost {item}."# Now, you have ${self.budget} left. Your total profit so far is ${self.profit}."
# set the profit information of other bidders
def set_all_bidders_status(self, all_bidders_status: dict):
self.all_bidders_status = all_bidders_status.copy()
def set_withdraw(self, bid: int):
if bid < 0: # withdraw
self.withdraw = True
elif bid == 0: # enable discount and bid again
self.withdraw = False
else: # normal bid
self.withdraw = False
self.engagement_count += 1
self.engagement_history[self._get_cur_item('name')] += 1
# ****************** Logging ****************** #
# def _parse_hedging(self, plan: str): # deprecated
# prompt = PARSE_HEDGE_INSTRUCTION.format(
# item_name=self._get_cur_item(),
# plan=plan)
# with get_openai_callback() as cb:
# llm = ChatOpenAI(model='gpt-3.5-turbo-0613', temperature=0)
# result = llm([HumanMessage(content=prompt)]).content
# self.openai_cost += cb.total_cost
# # parse a number, which could be a digit
# hedge_percent = re.findall(r'\d+\.?\d*%', result)
# if len(hedge_percent) > 0:
# hedge_percent = hedge_percent[0].replace('%', '')
# else:
# hedge_percent = 0
# return float(hedge_percent)
def profit_report(self):
'''
Personal profit report at the end of an auction.
'''
msg = f"* {self.name}, starting with ${self.original_budget}, has won {len(self.items_won)} items in this auction, with a total profit of ${self.profit}.:\n"
profit = 0
for item, bid in self.items_won:
profit += item.true_value - bid
msg += f" * Won {item} at ${bid} over ${item.price}, with a true value of ${item.true_value}.\n"
return msg.strip()
def to_monitors(self, as_json=False):
# budget, profit, items_won, tokens
if len(self.items_won) == 0 and not as_json:
items_won = [['', 0, 0]]
else:
items_won = []
for item, bid in self.items_won:
items_won.append([str(item), bid, item.true_value])
profit_error_history = self.profit_error_history if self.profit_error_history != [] or as_json else [['', '', '']]
win_bid_error_history = self.win_bid_error_history if self.win_bid_error_history != [] or as_json else [['', '', '']]
budget_error_history = self.budget_error_history if self.budget_error_history != [] or as_json else [['', '']]
changes_of_plan = self.changes_of_plan if self.changes_of_plan != [] or as_json else [['', '', '']]
if as_json:
return {
'auction_hash': self.auction_hash,
'bidder_name': self.name,
'model_name': self.model_name,
'desire': self.desire,
'plan_strategy': self.plan_strategy,
'overestimate_percent': self.overestimate_percent,
'temperature': self.temperature,
'correct_belief': self.correct_belief,
'enable_learning': self.enable_learning,
'budget': self.original_budget,
'money_left': self.budget,
'profit': self.profit,
'items_won': items_won,
'tokens_used': self.llm_token_count,
'openai_cost': round(self.openai_cost, 2),
'failed_bid_cnt': self.failed_bid_cnt,
'self_belief_error_cnt': self.self_belief_error_cnt,
'other_belief_error_cnt': self.other_belief_error_cnt,
'failed_bid_rate': round(self.failed_bid_cnt / (self.total_bid_cnt+1e-8), 2),
'self_error_rate': round(self.self_belief_error_cnt / (self.total_self_belief_cnt+1e-8), 2),
'other_error_rate': round(self.other_belief_error_cnt / (self.total_other_belief_cnt+1e-8), 2),
'engagement_count': self.engagement_count,
'engagement_history': self.engagement_history,
'changes_of_plan': changes_of_plan,
'budget_error_history': budget_error_history,
'profit_error_history': profit_error_history,
'win_bid_error_history': win_bid_error_history,
'history': self.llm_prompt_history
}
else:
return [
self.budget,
self.profit,
items_won,
self.llm_token_count,
round(self.openai_cost, 2),
round(self.failed_bid_cnt / (self.total_bid_cnt+1e-8), 2),
round(self.self_belief_error_cnt / (self.total_self_belief_cnt+1e-8), 2),
round(self.other_belief_error_cnt / (self.total_other_belief_cnt+1e-8), 2),
self.engagement_count,
draw_plot(f"{self.name} ({self.model_name})", self.budget_history, self.profit_history),
changes_of_plan,
budget_error_history,
profit_error_history,
win_bid_error_history
]
def dialogue_to_chatbot(self):
# chatbot: [[Human, AI], [], ...]
# only dialogue will be sent to LLMs. chatbot is just for display.
assert len(self.dialogue_history) % 2 == 0
chatbot = []
for i in range(0, len(self.dialogue_history), 2):
# if exceeds the length of dialogue, append the last message
human_msg = self.dialogue_history[i].content
ai_msg = self.dialogue_history[i+1].content
if ai_msg == '': ai_msg = None
if human_msg == '': human_msg = None
chatbot.append([human_msg, ai_msg])
return chatbot
def draw_plot(title, hedge_list, profit_list):
x1 = [str(i) for i in range(len(hedge_list))]
x2 = [str(i) for i in range(len(profit_list))]
y1 = hedge_list
y2 = profit_list
fig, ax1 = plt.subplots()
color = 'tab:red'
ax1.set_xlabel('Bidding Round')
ax1.set_ylabel('Budget Left ($)', color=color)
ax1.plot(x1, y1, color=color, marker='o')
ax1.tick_params(axis='y', labelcolor=color)
for i, j in zip(x1, y1):
ax1.text(i, j, str(j), color=color)
ax2 = ax1.twinx()
color = 'tab:blue'
ax2.set_ylabel('Total Profit ($)', color=color)
ax2.plot(x2, y2, color=color, marker='^')
ax2.tick_params(axis='y', labelcolor=color)
for i, j in zip(x2, y2):
ax2.text(i, j, str(j), color=color)
lines1, labels1 = ax1.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines1 + lines2, labels1 + labels2, loc=0)
# fig.tight_layout()
plt.title(title)
return fig
def bidding_multithread(bidder_list: List[Bidder],
instruction_list,
func_type,
thread_num=5,
retry=1):
'''
auctioneer_msg: either a uniform message (str) or customed (list)
'''
assert func_type in ['plan', 'bid', 'summarize', 'replan']
result_queue = queue.Queue()
threads = []
semaphore = threading.Semaphore(thread_num)
def run_once(i: int, bidder: Bidder, auctioneer_msg: str):
try:
semaphore.acquire()
if func_type == 'bid':
result = bidder.bid(auctioneer_msg)
elif func_type == 'summarize':
result = bidder.summarize(auctioneer_msg)
elif func_type == 'plan':
result = bidder.init_plan(auctioneer_msg)
elif func_type == 'replan':
result = bidder.replan(auctioneer_msg)
else:
raise NotImplementedError(f'func_type {func_type} not implemented')
result_queue.put((True, i, result))
# except Exception as e:
# result_queue.put((False, i, str(trace_back(e))))
finally:
semaphore.release()
if isinstance(instruction_list, str):
instruction_list = [instruction_list] * len(bidder_list)
for i, (bidder, msg) in enumerate(zip(bidder_list, instruction_list)):
thread = threading.Thread(target=run_once, args=(i, bidder, msg))
thread.start()
threads.append(thread)
for thread in threads:
thread.join(timeout=600)
results = [result_queue.get() for _ in range(len(bidder_list))]
errors = []
for success, id, result in results:
if not success:
errors.append((id, result))
if errors:
raise Exception(f"Error(s) in {func_type}:\n" + '\n'.join([f'{i}: {e}' for i, e in errors]))
valid_results = [x[1:] for x in results if x[0]]
valid_results.sort()
return [x for _, x in valid_results]
def bidders_to_chatbots(bidder_list: List[Bidder], profit_report=False):
if profit_report: # usually at the end of an auction
return [x.dialogue_to_chatbot() + [[x.profit_report(), None]] for x in bidder_list]
else:
return [x.dialogue_to_chatbot() for x in bidder_list]
def create_bidders(bidder_info_jsl, auction_hash):
bidder_info_jsl = LoadJsonL(bidder_info_jsl)
bidder_list = []
for info in bidder_info_jsl:
info['auction_hash'] = auction_hash
bidder_list.append(Bidder.create(**info))
return bidder_list