Spaces:
Sleeping
Sleeping
File size: 9,587 Bytes
a977e3e cbe9336 a977e3e cbe9336 a977e3e cbe9336 a977e3e 9d03b23 cbe9336 a977e3e cbe9336 a977e3e cbe9336 a977e3e cbe9336 a977e3e cbe9336 a977e3e cbe9336 a977e3e cbe9336 a977e3e cbe9336 a977e3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import itertools
import json
import multiprocessing
import numpy as np
from typing import Dict
from datasets import load_dataset
from .testing_util import run_test
DATASET = "codeparrot/apps"
TIMEOUT = 10
def _temp_run(sample, generation, debug, result):
result.append(run_test(sample, test=generation, debug=debug))
def check_correctness(sample, generation, timeout, debug=True):
"""Check correctness of code generation with a global timeout.
The global timeout is to catch some extreme/rare cases not handled by the timeouts
inside `run_test`"""
manager = multiprocessing.Manager()
result = manager.list()
p = multiprocessing.Process(target=_temp_run, args=(sample, generation, debug, result))
p.start()
p.join(timeout=timeout + 1)
if p.is_alive():
p.kill()
if not result:
in_outs = json.loads(sample["input_output"])
# consider that all tests failed
result = [[-1 for i in range(len(in_outs["inputs"]))]]
if debug:
print(f"global timeout")
return result[0]
def evaluate_generations(generations: list, indices: list = [], level: str = "all", debug: bool = False):
"""We take the list of code generations and try to compile them
and the run their corresponding unit tests which are retrieved from the APPS dataset.
Args:
generations: list of code generations (same order as samples in APPS dataset)
indices: list of indicies of problems to evaluate, if empty, evaluate all problems
level: difficulty level used in the generation, can be "all", "introductory", "interview" or "competition"
Returns:
results: dictionary of results, key is the problem index, value is a list of results for each generation
[-2] = compile error, [-1] = runtime error [False] = failed test case [True] = passed test case
"""
# generations are code generations in the same order of the dataset
apps_eval = load_dataset(DATASET, level, split="train")
if indices is None:
indices = range(len(generations))
results = {}
for index, generation in zip(indices, generations):
# code generations for problem (index)
problem_generations = generation
# get corresponding samples from APPS dataset
sample = apps_eval[index]
res = []
# loop over the generations
for o_idx, o in enumerate(problem_generations):
curr_res = [-2]
try:
curr_res = check_correctness(sample, o, timeout=TIMEOUT, debug=debug)
if debug:
print(f"\nSuccessful compilation of task {index}!")
fixed = []
for e in curr_res:
if isinstance(e, np.ndarray):
e = e.item(0)
if isinstance(e, np.bool_):
e = bool(e)
fixed.append(e)
curr_res = fixed
if not np.all(curr_res):
if debug:
print(f"Results were not True for all test cases")
except Exception as e:
if debug:
print(f"Compilation failed, test framework exception = {repr(e)}\n")
break
finally:
assert isinstance(curr_res, list)
res.append(curr_res)
results[index] = res
return results
def estimate_pass_at_k(num_samples, num_correct, k):
"""Estimates pass@k of each problem and returns them in an array."""
def estimator(n: int, c: int, k: int) -> float:
"""Calculates 1 - comb(n - c, k) / comb(n, k)."""
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
if isinstance(num_samples, int):
num_samples_it = itertools.repeat(num_samples, len(num_correct))
else:
assert len(num_samples) == len(num_correct)
num_samples_it = iter(num_samples)
return np.array([estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)])
def get_results(results: Dict[int, list], count_errors: bool = False, k_list: list = [1, 10, 100]):
"""
Given the results evaluated against the testcases we output some statistics.
For single generations:
>>> example_results = {0: [[-2]], 1: [[False,False]], 2: [[True,True]], 3: [[False,True,False,True]], 4: [[-1,-1]]}
>>> get_results(example_results, count_errors=True)
Computing accuracy metrics...
number of compile errors = 1 avg = 0.2
number of runtime errors = 1 avg = 0.2
number of problems evaluated = 5
Average Accuracy : 0.3
Strict Accuracy : 0.2
{'avg_accuracy': 0.3, 'strict_accuracy': 0.2, 'pass_at_k': None}
For multiple generations:
>>> example_results = {0: [[-2], [True, True, True]], 1: [[-1,-1, -1], [True, False, True]]}
>>> get_results(example_results, k_list=[1, 2])
Computing pass@k metric for multiple generations...
{'pass@1': 0.25, 'pass@2': 0.5}
{'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 0.25, 'pass@2': 0.5}}
"""
metrics = {"avg_accuracy": None, "strict_accuracy": None, "pass_at_k": None}
if len(list(results.values())[0]) == 1:
# for single generations we compute average accuracy and stric accuracy: original APPS metrics
print("Computing accuracy metrics...")
res = []
per_prob_res = []
all_correct = []
for index in results:
problem_results = np.asarray(results[index])
res.extend(problem_results)
per_prob_res.append(np.mean(problem_results > 0))
all_correct.append(np.all(problem_results > 0))
# we count campilation and runtime errors once per pronlem
compile_errors = len([e for e in res if -2 in e])
runtime_errors = len([e for e in res if -1 in e])
total_testcases = len(res)
if count_errors:
print(f"number of compile errors = {compile_errors} avg = {compile_errors / total_testcases}")
print(f"number of runtime errors = {runtime_errors} avg = {runtime_errors / total_testcases}")
print(f"number of problems evaluated = {total_testcases}")
print(f"Average Accuracy : {np.mean(per_prob_res)}")
print(f"Strict Accuracy : {np.mean(all_correct)}")
metrics["avg_accuracy"] = np.mean(per_prob_res)
metrics["strict_accuracy"] = np.mean(all_correct)
else:
# for multiple generations we use pass@k metric used in the HumanEval benchmark
# we use strict accuracy, a generation is valid if it has to pass all the tests
print("Computing pass@k metric for multiple generations...")
# total is list with nb generations per task (task=index)
# correct is number of generations that passed all tests per task
total = []
correct = []
for index in results:
all_correct = []
for generation in results[index]:
gen = np.array(generation)
all_correct.append(np.all(gen>0))
total.append(len(all_correct))
correct.append(sum(all_correct))
total = np.array(total)
correct = np.array(correct)
ks = k_list
pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean() for k in ks if (total >= k).all()}
print(pass_at_k)
metrics["pass_at_k"] = pass_at_k
return metrics
def compute_metrics(generations, indices=None, level="all", k_list=[1, 10, 100], count_errors=True, debug=False):
"""Return metrics for the given generations.
Args:
generations: list of code generations for each problem (each generation is a list of generations)
indices: list of indices of problems (if None, generations are all problems)
k_list: list of k values to compute pass@k when using multiple generations
count_errors: whether to count compilation and runtime errors when using single generations
level: difficulty level in APPS dataset that was used for the given generations (from: "all", "introductory", "interview", "competition")
Returns:
metrics: dict of metrics
Examples:
>>> import json
>>> # lists of solutions to the two first APPS problems (note not all solutions pass all tests)
>>> solution_sample1 = json.load(open("test_examples/solutions_problem_1.json", "r"))
>>> solution_sample2 = json.load(open("test_examples/solutions_problem_2.json", "r"))
>>> single_solutions = [solution_sample1[:1], solution_sample2[:1]]
>>> compute_metrics(single_solutions, level="all")
Computing accuracy metrics...
number of compile errors = 0 avg = 0.0
number of runtime errors = 0 avg = 0.0
number of problems evaluated = 2
Average Accuracy : 1.0
Strict Accuracy : 1.0
{'avg_accuracy': 1.0, 'strict_accuracy': 1.0, 'pass_at_k': None}
>>> multiple_solutions = [solution_sample1[:3], solution_sample2[:3]]
>>> compute_metrics(multiple_solutions, level="all", k_list=[1, 2, 3])
Computing pass@k metric for multiple generations...
{'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}
{'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}}
"""
results = evaluate_generations(generations, indices=indices, level=level, debug=debug)
metrics = get_results(results, count_errors=count_errors, k_list=k_list)
return metrics
# import doctest
# doctest.testmod()
|