File size: 9,587 Bytes
a977e3e
 
 
 
 
 
 
 
 
 
 
cbe9336
 
 
 
a977e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbe9336
a977e3e
 
 
 
 
cbe9336
a977e3e
 
 
 
 
 
 
 
9d03b23
cbe9336
 
 
 
a977e3e
cbe9336
a977e3e
cbe9336
a977e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbe9336
a977e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbe9336
a977e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbe9336
a977e3e
 
 
cbe9336
a977e3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbe9336
a977e3e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import itertools
import json
import multiprocessing
import numpy as np
from typing import Dict
from datasets import load_dataset
from .testing_util import run_test

DATASET = "codeparrot/apps"
TIMEOUT = 10


def _temp_run(sample, generation, debug, result):
    result.append(run_test(sample, test=generation, debug=debug))

def check_correctness(sample, generation, timeout, debug=True):
    """Check correctness of code generation with a global timeout.
    The global timeout is to catch some extreme/rare cases not handled by the timeouts
    inside `run_test`"""
    manager = multiprocessing.Manager()
    result = manager.list()
    p = multiprocessing.Process(target=_temp_run, args=(sample, generation, debug, result))
    p.start()
    p.join(timeout=timeout + 1)
    if p.is_alive():
        p.kill()
    if not result:
        in_outs = json.loads(sample["input_output"])
        # consider that all tests failed
        result = [[-1 for i in range(len(in_outs["inputs"]))]]
        if debug:
            print(f"global timeout")
    return result[0]


def evaluate_generations(generations: list, indices: list = [], level: str = "all", debug: bool = False):
    """We take the list of code generations and try to compile them
     and the run their corresponding unit tests which are retrieved from the APPS dataset.

    Args:
        generations: list of code generations (same order as samples in APPS dataset)
        indices: list of indicies of problems to evaluate, if empty, evaluate all problems
        level: difficulty level used in the generation, can be "all", "introductory", "interview" or "competition"

    Returns:
        results: dictionary of results, key is the problem index, value is a list of results for each generation
        [-2] = compile error, [-1] = runtime error [False] = failed test case [True] = passed test case
     """

    # generations are code generations in the same order of the dataset
    apps_eval = load_dataset(DATASET, level, split="train")

    if indices is None:
        indices = range(len(generations))

    results = {}
    for index, generation in zip(indices, generations):
        # code generations for problem (index)
        problem_generations = generation
        # get corresponding samples from APPS dataset
        sample = apps_eval[index]
        res = []
        # loop over the generations
        for o_idx, o in enumerate(problem_generations):
            curr_res = [-2]
            try:
                curr_res = check_correctness(sample, o, timeout=TIMEOUT, debug=debug)
                if debug:
                    print(f"\nSuccessful compilation of task {index}!")
                fixed = []
                for e in curr_res:
                    if isinstance(e, np.ndarray):
                       e = e.item(0)
                    if isinstance(e, np.bool_):
                        e = bool(e)
                    fixed.append(e)
                curr_res = fixed
                if not np.all(curr_res):
                    if debug:
                        print(f"Results were not True for all test cases")
            except Exception as e:
                if debug:
                    print(f"Compilation failed, test framework exception = {repr(e)}\n")
                break
            finally:
                assert isinstance(curr_res, list)
                res.append(curr_res)
        results[index] = res
    return results


def estimate_pass_at_k(num_samples, num_correct, k):
    """Estimates pass@k of each problem and returns them in an array."""

    def estimator(n: int, c: int, k: int) -> float:
        """Calculates 1 - comb(n - c, k) / comb(n, k)."""
        if n - c < k:
            return 1.0
        return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))

    if isinstance(num_samples, int):
        num_samples_it = itertools.repeat(num_samples, len(num_correct))
    else:
        assert len(num_samples) == len(num_correct)
        num_samples_it = iter(num_samples)

    return np.array([estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)])


def get_results(results: Dict[int, list], count_errors: bool = False, k_list: list = [1, 10, 100]):
    """
    Given the results evaluated against the testcases we output some statistics.
    For single generations:
    >>> example_results = {0: [[-2]], 1: [[False,False]], 2: [[True,True]], 3: [[False,True,False,True]], 4: [[-1,-1]]}
    >>> get_results(example_results, count_errors=True)
    Computing accuracy metrics...
    number of compile errors = 1 avg = 0.2
    number of runtime errors = 1 avg = 0.2
    number of problems evaluated = 5
    Average Accuracy : 0.3
    Strict Accuracy : 0.2
    {'avg_accuracy': 0.3, 'strict_accuracy': 0.2, 'pass_at_k': None}

    For multiple generations:
    >>> example_results = {0: [[-2], [True, True, True]], 1: [[-1,-1, -1], [True, False, True]]}
    >>> get_results(example_results, k_list=[1, 2])
    Computing pass@k metric for multiple generations...
    {'pass@1': 0.25, 'pass@2': 0.5}
    {'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 0.25, 'pass@2': 0.5}}
    """

    metrics = {"avg_accuracy": None, "strict_accuracy": None, "pass_at_k": None}

    if len(list(results.values())[0]) == 1:
        # for single generations we compute average accuracy and stric accuracy: original APPS metrics
        print("Computing accuracy metrics...")
        res = []
        per_prob_res = []
        all_correct = []
        for index in results:
            problem_results = np.asarray(results[index])
            res.extend(problem_results)
            per_prob_res.append(np.mean(problem_results > 0))
            all_correct.append(np.all(problem_results > 0))
        # we count campilation and runtime errors once per pronlem
        compile_errors = len([e for e in res if -2 in e])
        runtime_errors = len([e for e in res if -1 in e])
        total_testcases = len(res)
        if count_errors:
            print(f"number of compile errors = {compile_errors} avg = {compile_errors / total_testcases}")
            print(f"number of runtime errors = {runtime_errors} avg = {runtime_errors / total_testcases}")
            print(f"number of problems evaluated = {total_testcases}")

        print(f"Average Accuracy : {np.mean(per_prob_res)}")
        print(f"Strict Accuracy : {np.mean(all_correct)}")
        metrics["avg_accuracy"] = np.mean(per_prob_res)
        metrics["strict_accuracy"] = np.mean(all_correct)

    else:
        # for multiple generations we use pass@k metric used in the HumanEval benchmark
        # we use strict accuracy, a generation is valid if it has to pass all the tests
        print("Computing pass@k metric for multiple generations...")
        # total is list with nb generations per task (task=index)
        # correct is number of generations that passed all tests per task
        total = []
        correct = [] 
        for index in results:
            all_correct = []
            for generation in results[index]:
                gen = np.array(generation)
                all_correct.append(np.all(gen>0))
            total.append(len(all_correct))
            correct.append(sum(all_correct))
        total = np.array(total)
        correct = np.array(correct)
        ks = k_list
        pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean() for k in ks if (total >= k).all()}
        print(pass_at_k)
        metrics["pass_at_k"] = pass_at_k
    return metrics

def compute_metrics(generations, indices=None, level="all", k_list=[1, 10, 100], count_errors=True, debug=False):
    """Return metrics for the given generations.
    Args:
        generations: list of code generations for each problem (each generation is a list of generations)
        indices: list of indices of problems (if None, generations are all problems)
        k_list: list of k values to compute pass@k when using multiple generations
        count_errors: whether to count compilation and runtime errors when using single generations
        level: difficulty level in APPS dataset that was used for the given generations (from: "all", "introductory", "interview", "competition")
    Returns:
        metrics: dict of metrics  

    Examples:

    >>> import json
    >>> # lists of solutions to the two first APPS problems (note not all solutions pass all tests)
    >>> solution_sample1 = json.load(open("test_examples/solutions_problem_1.json", "r"))
    >>> solution_sample2 = json.load(open("test_examples/solutions_problem_2.json", "r"))
    >>> single_solutions = [solution_sample1[:1], solution_sample2[:1]]
    >>> compute_metrics(single_solutions, level="all")
    Computing accuracy metrics...
    number of compile errors = 0 avg = 0.0
    number of runtime errors = 0 avg = 0.0
    number of problems evaluated = 2
    Average Accuracy : 1.0
    Strict Accuracy : 1.0
    {'avg_accuracy': 1.0, 'strict_accuracy': 1.0, 'pass_at_k': None}
    >>> multiple_solutions = [solution_sample1[:3], solution_sample2[:3]]
    >>> compute_metrics(multiple_solutions, level="all", k_list=[1, 2, 3])
    Computing pass@k metric for multiple generations...
    {'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}
    {'avg_accuracy': None, 'strict_accuracy': None, 'pass_at_k': {'pass@1': 1.0, 'pass@2': 1.0, 'pass@3': 1.0}}
    """
    results = evaluate_generations(generations, indices=indices, level=level, debug=debug)
    metrics = get_results(results, count_errors=count_errors, k_list=k_list)
    return metrics

# import doctest
# doctest.testmod()