File size: 3,852 Bytes
ff5aa27
 
960f111
ff5aa27
cdb03d3
960f111
 
ff5aa27
c89be6a
11a447c
56d7f1f
dfe2ca6
c89be6a
ff5aa27
c89be6a
 
 
960f111
 
 
b17cfc2
 
cdb03d3
960f111
b17cfc2
960f111
 
 
b17cfc2
960f111
 
 
b17cfc2
 
960f111
 
 
cdb03d3
960f111
 
 
 
 
ca9094f
b17cfc2
 
 
 
 
 
960f111
 
 
 
 
b17cfc2
960f111
b17cfc2
 
 
c89be6a
b17cfc2
e3a6426
 
3a1a0a3
3aeef88
 
960f111
 
 
 
b17cfc2
 
 
 
 
960f111
b17cfc2
 
 
 
 
 
 
 
 
 
 
960f111
b17cfc2
 
 
 
 
 
25c9e51
c89be6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import whisper
import gradio as gr
import time
import os
from typing import BinaryIO, Union, Tuple, List
import numpy as np
import torch

from modules.whisper_base import WhisperBase
from modules.whisper_parameter import *


class WhisperInference(WhisperBase):
    def __init__(self):
        super().__init__(
            model_dir=os.path.join("models", "Whisper")
        )

    def transcribe(self,
                   audio: Union[str, np.ndarray, torch.Tensor],
                   progress: gr.Progress,
                   *whisper_params,
                   ) -> Tuple[List[dict], float]:
        """
        transcribe method for faster-whisper.

        Parameters
        ----------
        audio: Union[str, BinaryIO, np.ndarray]
            Audio path or file binary or Audio numpy array
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *whisper_params: tuple
            Gradio components related to Whisper. see whisper_data_class.py for details.

        Returns
        ----------
        segments_result: List[dict]
            list of dicts that includes start, end timestamps and transcribed text
        elapsed_time: float
            elapsed time for transcription
        """
        start_time = time.time()
        params = WhisperValues(*whisper_params)

        if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
            self.update_model(params.model_size, params.compute_type, progress)

        if params.lang == "Automatic Detection":
            params.lang = None

        def progress_callback(progress_value):
            progress(progress_value, desc="Transcribing..")

        segments_result = self.model.transcribe(audio=audio,
                                                language=params.lang,
                                                verbose=False,
                                                beam_size=params.beam_size,
                                                logprob_threshold=params.log_prob_threshold,
                                                no_speech_threshold=params.no_speech_threshold,
                                                task="translate" if params.is_translate and self.current_model_size in self.translatable_models else "transcribe",
                                                fp16=True if params.compute_type == "float16" else False,
                                                best_of=params.best_of,
                                                patience=params.patience,
                                                temperature=params.temperature,
                                                compression_ratio_threshold=params.compression_ratio_threshold,
                                                progress_callback=progress_callback,)["segments"]
        elapsed_time = time.time() - start_time

        return segments_result, elapsed_time

    def update_model(self,
                     model_size: str,
                     compute_type: str,
                     progress: gr.Progress,
                     ):
        """
        Update current model setting

        Parameters
        ----------
        model_size: str
            Size of whisper model
        compute_type: str
            Compute type for transcription.
            see more info : https://opennmt.net/CTranslate2/quantization.html
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        """
        progress(0, desc="Initializing Model..")
        self.current_compute_type = compute_type
        self.current_model_size = model_size
        self.model = whisper.load_model(
            name=model_size,
            device=self.device,
            download_root=self.model_dir
        )