Spaces:
Running
Running
File size: 12,775 Bytes
ff5aa27 960f111 ff5aa27 960f111 ff5aa27 960f111 ff5aa27 56d7f1f 1e64bcc dfe2ca6 1e64bcc 64e6134 ff5aa27 64e6134 94e3a48 42af183 ff5aa27 56d7f1f 167d34d ff5aa27 56d7f1f 167d34d 56d7f1f 1e64bcc f9bd9ba 960f111 f9bd9ba 960f111 f9bd9ba 960f111 f9bd9ba 960f111 f9bd9ba 960f111 f9bd9ba 960f111 f9bd9ba 960f111 f9bd9ba 960f111 f9bd9ba 960f111 f9bd9ba 64e6134 ff5aa27 56d7f1f 167d34d f9bd9ba 56d7f1f 167d34d 56d7f1f f9bd9ba 960f111 f9bd9ba 8d692ce 960f111 1e64bcc 8d692ce f9bd9ba 960f111 f9bd9ba 960f111 f9bd9ba 64e6134 1e64bcc 56d7f1f 1e64bcc 56d7f1f 1e64bcc f9bd9ba 960f111 ff5aa27 960f111 f9bd9ba ff5aa27 960f111 ff5aa27 960f111 f9bd9ba 960f111 f9bd9ba 64e6134 960f111 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import whisper
import gradio as gr
import time
import os
from typing import BinaryIO, Union, Tuple
import numpy as np
from datetime import datetime
import torch
from .base_interface import BaseInterface
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
from modules.youtube_manager import get_ytdata, get_ytaudio
DEFAULT_MODEL_SIZE = "large-v2"
class WhisperInference(BaseInterface):
def __init__(self):
super().__init__()
self.current_model_size = None
self.model = None
self.available_models = whisper.available_models()
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
def transcribe_file(self,
fileobjs: list,
model_size: str,
lang: str,
subformat: str,
istranslate: bool,
add_timestamp: bool,
progress=gr.Progress()):
"""
Write subtitle file from Files
Parameters
----------
fileobjs: list
List of files to transcribe from gr.Files()
model_size: str
Whisper model size from gr.Dropdown()
lang: str
Source language of the file to transcribe from gr.Dropdown()
subformat: str
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
"""
try:
if model_size != self.current_model_size or self.model is None:
self.initialize_model(model_size=model_size, progress=progress)
files_info = {}
for fileobj in fileobjs:
progress(0, desc="Loading Audio..")
audio = whisper.load_audio(fileobj.name)
result, elapsed_time = self.transcribe(audio=audio,
lang=lang,
istranslate=istranslate,
progress=progress)
progress(1, desc="Completed!")
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
file_name = safe_filename(file_name)
subtitle = self.generate_and_write_subtitle(
file_name=file_name,
transcribed_segments=result,
add_timestamp=add_timestamp,
subformat=subformat
)
files_info[file_name] = {"subtitle": subtitle, "elapsed_time": elapsed_time}
total_result = ''
total_time = 0
for file_name, info in files_info.items():
total_result += '------------------------------------\n'
total_result += f'{file_name}\n\n'
total_result += f"{info['subtitle']}"
total_time += info["elapsed_time"]
return f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
except Exception as e:
print(f"Error transcribing file: {str(e)}")
return f"Error transcribing file: {str(e)}"
finally:
self.release_cuda_memory()
self.remove_input_files([fileobj.name for fileobj in fileobjs])
def transcribe_youtube(self,
youtubelink: str,
model_size: str,
lang: str,
subformat: str,
istranslate: bool,
add_timestamp: bool,
progress=gr.Progress()):
"""
Write subtitle file from Youtube
Parameters
----------
youtubelink: str
Link of Youtube to transcribe from gr.Textbox()
model_size: str
Whisper model size from gr.Dropdown()
lang: str
Source language of the file to transcribe from gr.Dropdown()
subformat: str
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
"""
try:
if model_size != self.current_model_size or self.model is None:
self.initialize_model(model_size=model_size, progress=progress)
progress(0, desc="Loading Audio from Youtube..")
yt = get_ytdata(youtubelink)
audio = whisper.load_audio(get_ytaudio(yt))
result, elapsed_time = self.transcribe(audio=audio,
lang=lang,
istranslate=istranslate,
progress=progress)
progress(1, desc="Completed!")
file_name = safe_filename(yt.title)
subtitle = self.generate_and_write_subtitle(
file_name=file_name,
transcribed_segments=result,
add_timestamp=add_timestamp,
subformat=subformat
)
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
except Exception as e:
print(f"Error transcribing youtube video: {str(e)}")
return f"Error transcribing youtube video: {str(e)}"
finally:
yt = get_ytdata(youtubelink)
file_path = get_ytaudio(yt)
self.release_cuda_memory()
self.remove_input_files([file_path])
def transcribe_mic(self,
micaudio: str,
model_size: str,
lang: str,
subformat: str,
istranslate: bool,
progress=gr.Progress()):
"""
Write subtitle file from microphone
Parameters
----------
micaudio: str
Audio file path from gr.Microphone()
model_size: str
Whisper model size from gr.Dropdown()
lang: str
Source language of the file to transcribe from gr.Dropdown()
subformat: str
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
progress: gr.Progress
Indicator to show progress directly in gradio.
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
"""
try:
if model_size != self.current_model_size or self.model is None:
self.initialize_model(model_size=model_size, progress=progress)
result, elapsed_time = self.transcribe(audio=micaudio,
lang=lang,
istranslate=istranslate,
progress=progress)
progress(1, desc="Completed!")
subtitle = self.generate_and_write_subtitle(
file_name="Mic",
transcribed_segments=result,
add_timestamp=True,
subformat=subformat
)
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
except Exception as e:
print(f"Error transcribing mic: {str(e)}")
return f"Error transcribing mic: {str(e)}"
finally:
self.release_cuda_memory()
self.remove_input_files([micaudio])
def transcribe(self,
audio: Union[str, np.ndarray, torch.Tensor],
lang: str,
istranslate: bool,
progress: gr.Progress
) -> Tuple[list[dict], float]:
"""
transcribe method for OpenAI's Whisper implementation.
Parameters
----------
audio: Union[str, BinaryIO, torch.Tensor]
Audio path or file binary or Audio numpy array
lang: str
Source language of the file to transcribe from gr.Dropdown()
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
progress: gr.Progress
Indicator to show progress directly in gradio.
Returns
----------
segments_result: list[dict]
list of dicts that includes start, end timestamps and transcribed text
elapsed_time: float
elapsed time for transcription
"""
start_time = time.time()
def progress_callback(progress_value):
progress(progress_value, desc="Transcribing..")
if lang == "Automatic Detection":
lang = None
translatable_model = ["large", "large-v1", "large-v2"]
segments_result = self.model.transcribe(audio=audio,
language=lang,
verbose=False,
task="translate" if istranslate and self.current_model_size in translatable_model else "transcribe",
progress_callback=progress_callback)["segments"]
elapsed_time = time.time() - start_time
return segments_result, elapsed_time
def initialize_model(self,
model_size: str,
progress: gr.Progress
):
"""
Initialize model if it doesn't match with current model size
"""
progress(0, desc="Initializing Model..")
self.current_model_size = model_size
self.model = whisper.load_model(name=model_size, download_root=os.path.join("models", "Whisper"))
@staticmethod
def generate_and_write_subtitle(file_name: str,
transcribed_segments: list,
add_timestamp: bool,
subformat: str,
) -> str:
"""
This method writes subtitle file and returns str to gr.Textbox
"""
timestamp = datetime.now().strftime("%m%d%H%M%S")
if add_timestamp:
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
else:
output_path = os.path.join("outputs", f"{file_name}")
if subformat == "SRT":
subtitle = get_srt(transcribed_segments)
write_file(subtitle, f"{output_path}.srt")
elif subformat == "WebVTT":
subtitle = get_vtt(transcribed_segments)
write_file(subtitle, f"{output_path}.vtt")
return subtitle
@staticmethod
def format_time(elapsed_time: float) -> str:
hours, rem = divmod(elapsed_time, 3600)
minutes, seconds = divmod(rem, 60)
time_str = ""
if hours:
time_str += f"{hours} hours "
if minutes:
time_str += f"{minutes} minutes "
seconds = round(seconds)
time_str += f"{seconds} seconds"
return time_str.strip()
|