Spaces:
Running
Running
File size: 19,596 Bytes
27d101d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
import gradio as gr
import whisper
import asyncio
import httpx
import tempfile
import os
import requests
import time
import threading
from datetime import datetime, timedelta
session = requests.Session()
from interview_protocol import protocols as interview_protocols
model = whisper.load_model("base")
base_url = "https://llm4socialisolation-fd4082d0a518.herokuapp.com"
# base_url = "http://localhost:8080"
timeout = 60
concurrency_count=10
# mapping between display names and internal chatbot_type values
display_to_value = {
'Echo': 'enhanced',
'Breeze': 'baseline'
}
value_to_display = {
'enhanced': 'Echo',
'baseline': 'Breeze'
}
def get_method_index(chapter, method):
all_methods = []
for chap in interview_protocols.values():
all_methods.extend(chap)
index = all_methods.index(method)
return index
async def initialization(api_key, chapter_name, topic_name, username, prompts, chatbot_type):
url = f"{base_url}/api/initialization"
headers = {'Content-Type': 'application/json'}
data = {
'api_key': api_key,
'chapter_name': chapter_name,
'topic_name': topic_name,
'username': username,
'chatbot_type': chatbot_type,
**prompts
}
async with httpx.AsyncClient(timeout=timeout) as client:
try:
response = await client.post(url, json=data, headers=headers)
if response.status_code == 200:
return "Initialization successful."
else:
return f"Initialization failed: {response.text}"
except asyncio.TimeoutError:
print("The request timed out")
return "Request timed out during initialization."
except Exception as e:
return f"Error in initialization: {str(e)}"
def fetch_default_prompts(chatbot_type):
url = f"{base_url}?chatbot_type={chatbot_type}"
try:
response = httpx.get(url, timeout=timeout)
if response.status_code == 200:
prompts = response.json()
print(prompts)
return prompts
else:
print(f"Failed to fetch prompts: {response.status_code} - {response.text}")
return {}
except Exception as e:
print(f"Error fetching prompts: {str(e)}")
return {}
async def get_backend_response(api_key, patient_prompt, username, chatbot_type):
url = f"{base_url}/responses/doctor"
headers = {'Content-Type': 'application/json'}
data = {
'username': username,
'patient_prompt': patient_prompt,
'chatbot_type': chatbot_type
}
async with httpx.AsyncClient(timeout=timeout) as client:
try:
response = await client.post(url, json=data, headers=headers)
if response.status_code == 200:
response_data = response.json()
return response_data
else:
return f"Failed to fetch response from backend: {response.text}"
except Exception as e:
return f"Error contacting backend service: {str(e)}"
async def save_conversation_and_memory(username, chatbot_type):
url = f"{base_url}/save/end_and_save"
headers = {'Content-Type': 'application/json'}
data = {
'username': username,
'chatbot_type': chatbot_type
}
async with httpx.AsyncClient(timeout=timeout) as client:
try:
response = await client.post(url, json=data, headers=headers)
if response.status_code == 200:
response_data = response.json()
return response_data.get('message', 'Saving Error!')
else:
return f"Failed to save conversations and memory graph: {response.text}"
except Exception as e:
return f"Error contacting backend service: {str(e)}"
async def get_conversation_histories(username, chatbot_type):
url = f"{base_url}/save/download_conversations"
headers = {'Content-Type': 'application/json'}
data = {
'username': username,
'chatbot_type': chatbot_type
}
async with httpx.AsyncClient(timeout=timeout) as client:
try:
response = await client.post(url, json=data, headers=headers)
if response.status_code == 200:
conversation_data = response.json()
return conversation_data
else:
return []
except Exception as e:
return []
def download_conversations(username, chatbot_type):
conversation_histories = asyncio.run(get_conversation_histories(username, chatbot_type))
files = []
temp_dir = tempfile.mkdtemp()
for conversation_entry in conversation_histories:
file_name = conversation_entry.get('file_name', f"Conversation_{len(files)+1}.txt")
conversation = conversation_entry.get('conversation', [])
conversation_text = ""
for message_pair in conversation:
if isinstance(message_pair, list) and len(message_pair) == 2:
speaker, message = message_pair
conversation_text += f"{speaker.capitalize()}: {message}\n\n"
else:
conversation_text += f"Unknown format: {message_pair}\n\n"
temp_file_path = os.path.join(temp_dir, file_name)
with open(temp_file_path, 'w') as temp_file:
temp_file.write(conversation_text)
files.append(temp_file_path)
return files
async def get_biography(username, chatbot_type):
url = f"{base_url}/save/generate_autobiography"
headers = {'Content-Type': 'application/json'}
data = {
'username': username,
'chatbot_type': chatbot_type
}
async with httpx.AsyncClient(timeout=timeout) as client:
try:
response = await client.post(url, json=data, headers=headers)
if response.status_code == 200:
biography_data = response.json()
biography_text = biography_data.get('biography', '')
return biography_text
else:
return "Failed to generate biography."
except Exception as e:
return f"Error contacting backend service: {str(e)}"
def download_biography(username, chatbot_type):
biography_text = asyncio.run(get_biography(username, chatbot_type))
if not biography_text or "Failed" in biography_text or "Error" in biography_text:
return gr.update(value=None, visible=False), gr.update(value=biography_text, visible=True)
temp_dir = tempfile.mkdtemp()
temp_file_path = os.path.join(temp_dir, "biography.txt")
with open(temp_file_path, 'w') as temp_file:
temp_file.write(biography_text)
return temp_file_path, gr.update(value=biography_text, visible=True)
def transcribe_audio(audio_file):
transcription = model.transcribe(audio_file)["text"]
return transcription
def submit_text_and_respond(edited_text, api_key, username, history, chatbot_type):
response = asyncio.run(get_backend_response(api_key, edited_text, username, chatbot_type))
print('------')
print(response)
if isinstance(response, str):
history.append((edited_text, response))
return history, "", []
doctor_response = response['doctor_response']['response']
memory_event = response.get('memory_events', [])
history.append((edited_text, doctor_response))
memory_graph = update_memory_graph(memory_event)
return history, "", memory_graph # Return memory_graph as output
def set_initialize_button(api_key_input, chapter_name, topic_name, username_input,
system_prompt_text, conv_instruction_prompt_text, therapy_prompt_text, autobio_prompt_text, chatbot_display_name):
chatbot_type = display_to_value.get(chatbot_display_name, 'enhanced')
prompts = {
'system_prompt': system_prompt_text,
'conv_instruction_prompt': conv_instruction_prompt_text,
'therapy_prompt': therapy_prompt_text,
'autobio_prompt': autobio_prompt_text
}
message = asyncio.run(initialization(api_key_input, chapter_name, topic_name, username_input, prompts, chatbot_type))
print(message)
return message, api_key_input, chatbot_type
def save_conversation(username, chatbot_type):
response = asyncio.run(save_conversation_and_memory(username, chatbot_type))
return response
def start_recording(audio_file):
if not audio_file:
return ""
try:
transcription = transcribe_audio(audio_file)
return transcription
except Exception as e:
return f"Failed to transcribe: {str(e)}"
def update_methods(chapter):
return gr.update(choices=interview_protocols[chapter], value=interview_protocols[chapter][0])
def update_memory_graph(memory_data):
table_data = []
for node in memory_data:
table_data.append([
node.get('date', ''),
node.get('topic', ''),
node.get('event_description', ''),
node.get('people_involved', '')
])
return table_data
def update_prompts(chatbot_display_name):
chatbot_type = display_to_value.get(chatbot_display_name, 'enhanced')
prompts = fetch_default_prompts(chatbot_type)
return (
gr.update(value=prompts.get('system_prompt', '')),
gr.update(value=prompts.get('conv_instruction_prompt', '')),
gr.update(value=prompts.get('therapy_prompt', '')),
gr.update(value=prompts.get('autobio_generation_prompt', '')),
)
def update_chatbot_type(chatbot_display_name):
chatbot_type = display_to_value.get(chatbot_display_name, 'enhanced')
return chatbot_type
# Function to start the periodic toggle
def start_timer():
target_timestamp = datetime.now() + timedelta(seconds=8 * 60)
return True, target_timestamp
def reset_timer():
is_running = False
return is_running, "Timer remaining: 8:00"
# Async function to manage periodic updates, running every second
def periodic_call(is_running, target_timestamp):
if is_running:
prefix = 'Time remaining:'
time_difference = target_timestamp - datetime.now()
second_left = int(round(time_difference.total_seconds()))
if second_left <= 0:
second_left = 0
minutes, seconds = divmod(second_left, 60)
new_remain_min = f'{minutes:02}'
new_remain_second = f'{seconds:02}'
new_info = f'{prefix} {new_remain_min}:{new_remain_second}'
return new_info
else:
return 'Time remaining: 8:00'
# initialize prompts with empty strings
initial_prompts = {'system_prompt': '', 'conv_instruction_prompt': '', 'therapy_prompt': '', 'autobio_generation_prompt': ''}
# CSS to keep the buttons small
css = """
#start_button, #reset_button {
padding: 4px 10px !important;
font-size: 12px !important;
width: auto !important;
}
"""
with gr.Blocks(css=css) as app:
chatbot_type_state = gr.State('enhanced')
api_key_state = gr.State()
prompt_visibility_state = gr.State(False)
is_running = gr.State()
target_timestamp = gr.State()
with gr.Row():
with gr.Column(scale=1, min_width=250):
gr.Markdown("## Settings")
# chatbot Type Selection
with gr.Box():
gr.Markdown("### Chatbot Selection")
chatbot_type_dropdown = gr.Dropdown(
label="Select Chatbot Type",
choices=['Echo', 'Breeze'],
value='Echo',
)
chatbot_type_dropdown.change(
fn=update_chatbot_type,
inputs=[chatbot_type_dropdown],
outputs=[chatbot_type_state]
)
# fetch initial prompts based on the default chatbot type
system_prompt_value, conv_instruction_prompt_value, therapy_prompt_value, autobio_prompt_value = update_prompts('Echo')
# interview protocol selection
with gr.Box():
gr.Markdown("### Interview Protocol")
chapter_dropdown = gr.Dropdown(
label="Select Chapter",
choices=list(interview_protocols.keys()),
value=list(interview_protocols.keys())[1],
)
method_dropdown = gr.Dropdown(
label="Select Topic",
choices=interview_protocols[chapter_dropdown.value],
value=interview_protocols[chapter_dropdown.value][3],
)
chapter_dropdown.change(
fn=update_methods,
inputs=[chapter_dropdown],
outputs=[method_dropdown]
)
# Update states when selections change
def update_chapter(chapter):
return chapter
def update_method(method):
return method
chapter_state = gr.State()
method_state = gr.State()
chapter_dropdown.change(
fn=update_chapter,
inputs=[chapter_dropdown],
outputs=[chapter_state]
)
method_dropdown.change(
fn=update_method,
inputs=[method_dropdown],
outputs=[method_state]
)
# customize Prompts
with gr.Box():
toggle_prompts_button = gr.Button("Show Prompts")
# wrap the prompts in a component with initial visibility set to False
with gr.Column(visible=False) as prompt_section:
gr.Markdown("### Customize Prompts")
system_prompt = gr.Textbox(
label="System Prompt",
placeholder="Enter the system prompt here.",
value=system_prompt_value['value']
)
conv_instruction_prompt = gr.Textbox(
label="Conversation Instruction Prompt",
placeholder="Enter the instruction for each conversation here.",
value=conv_instruction_prompt_value['value']
)
therapy_prompt = gr.Textbox(
label="Therapy Prompt",
placeholder="Enter the instruction for reminiscence therapy.",
value=therapy_prompt_value['value']
)
autobio_prompt = gr.Textbox(
label="Autobiography Generation Prompt",
placeholder="Enter the instruction for autobiography generation.",
value=autobio_prompt_value['value']
)
# update prompts when chatbot_type changes
chatbot_type_dropdown.change(
fn=update_prompts,
inputs=[chatbot_type_dropdown],
outputs=[system_prompt, conv_instruction_prompt, therapy_prompt, autobio_prompt]
)
with gr.Box():
gr.Markdown("### User Information")
username_input = gr.Textbox(
label="Username", placeholder="Enter your username"
)
api_key_input = gr.Textbox(
label="OpenAI API Key",
placeholder="Enter your openai api key",
type="password"
)
initialize_button = gr.Button("Initialize", variant="primary", size="large")
initialization_status = gr.Textbox(
label="Status", interactive=False, placeholder="Initialization status will appear here."
)
initialize_button.click(
fn=set_initialize_button,
inputs=[api_key_input, chapter_dropdown, method_dropdown, username_input,
system_prompt, conv_instruction_prompt, therapy_prompt, autobio_prompt, chatbot_type_dropdown],
outputs=[initialization_status, api_key_state, chatbot_type_state],
)
# define the function to toggle prompts visibility
def toggle_prompts(visibility):
new_visibility = not visibility
button_text = "Hide Prompts" if new_visibility else "Show Prompts"
return gr.update(value=button_text), gr.update(visible=new_visibility), new_visibility
toggle_prompts_button.click(
fn=toggle_prompts,
inputs=[prompt_visibility_state],
outputs=[toggle_prompts_button, prompt_section, prompt_visibility_state]
)
with gr.Column(scale=3):
with gr.Row():
timer_display = gr.Textbox(value="Time remaining: 08:00", label="")
start_button = gr.Button("Start Timer", elem_id="start_button")
start_button.click(start_timer, outputs=[is_running, target_timestamp]).then(
periodic_call, inputs=[is_running, target_timestamp], outputs=timer_display, every=1)
chatbot = gr.Chatbot(label="Chat here for autobiography generation", height=500)
with gr.Row():
transcription_box = gr.Textbox(
label="Transcription (You can edit this)", lines=3
)
audio_input = gr.Audio(
source="microphone", type="filepath", label="🎤 Record Audio"
)
with gr.Row():
submit_button = gr.Button("Submit", variant="primary", size="large")
save_conversation_button = gr.Button("End and Save Conversation", variant="secondary")
download_button = gr.Button("Download Conversations", variant="secondary")
download_biography_button = gr.Button("Download Biography", variant="secondary")
memory_graph_table = gr.Dataframe(
headers=["Date", "Topic", "Description", "People Involved"],
datatype=["str", "str", "str", "str"],
interactive=False,
label="Memory Events",
max_rows=5
)
biography_textbox = gr.Textbox(label="Autobiography", visible=False)
audio_input.change(
fn=start_recording,
inputs=[audio_input],
outputs=[transcription_box]
)
state = gr.State([])
submit_button.click(
submit_text_and_respond,
inputs=[transcription_box, api_key_state, username_input, state, chatbot_type_state],
outputs=[chatbot, transcription_box, memory_graph_table]
)
download_button.click(
fn=download_conversations,
inputs=[username_input, chatbot_type_state],
outputs=gr.Files()
)
download_biography_button.click(
fn=download_biography,
inputs=[username_input, chatbot_type_state],
outputs=[gr.File(label="Biography.txt"), biography_textbox]
)
save_conversation_button.click(
fn=save_conversation,
inputs=[username_input, chatbot_type_state],
outputs=None
)
app.queue()
app.launch(share=True, max_threads=10)
|