Spaces:
jfforero
/
Runtime error

AVE2 / app.py
jfforero's picture
Update app.py
43b4de4 verified
raw
history blame
3.18 kB
import gradio as gr
import numpy as np
import librosa
import time
from tensorflow.keras.models import load_model
# Load the emotion prediction model
def load_emotion_model(model_path):
try:
model = load_model(model_path)
return model
except Exception as e:
print("Error loading emotion prediction model:", e)
return None
model_path = 'mymodel_SER_LSTM_RAVDESS.h5'
model = load_emotion_model(model_path)
# Function to extract MFCC features from audio
def extract_mfcc(wav_file_name):
try:
y, sr = librosa.load(wav_file_name)
mfccs = np.mean(librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40).T, axis=0)
return mfccs
except Exception as e:
print("Error extracting MFCC features:", e)
return None
# Emotions dictionary
emotions = {1: 'neutral', 2: 'calm', 3: 'happy', 4: 'sad', 5: 'angry', 6: 'fearful', 7: 'disgust', 8: 'surprised'}
# Function to predict emotion from audio
def predict_emotion_from_audio(wav_filepath):
try:
test_point = extract_mfcc(wav_filepath)
if test_point is not None:
test_point = np.reshape(test_point, newshape=(1, 40, 1))
predictions = model.predict(test_point)
predicted_emotion_label = np.argmax(predictions[0]) + 1
return emotions[predicted_emotion_label]
else:
return "Error: Unable to extract features"
except Exception as e:
print("Error predicting emotion:", e)
return None
# Define the API key for DeepAI Text to Image API
api_key = 'dee3e3f2-d5cf-474c-8072-bd6bea47e865'
# Predict emotion from audio
def get_predictions(audio_input):
emotion_prediction = predict_emotion_from_audio(audio_input)
# Generate image here or call a separate function
image = generate_image(api_key, emotion_prediction)
return emotion_prediction, image
###
# Define a function to generate an image using DeepAI Text to Image API
def generate_image(api_key, text):
url = "https://api.deepai.org/api/text2img"
headers = {'api-key': api_key}
response = requests.post(
url,
data={
'text': text,
},
headers=headers
)
response_data = response.json()
if 'output_url' in response_data:
image_url = response_data['output_url']
image_response = requests.get(image_url)
image = Image.open(BytesIO(image_response.content))
return image
else:
return None
####
# Create the Gradio interface
with gr.Blocks() as interface:
gr.Markdown("Emotional Machines test: Load or Record an audio file to speech emotion analysis")
with gr.Tabs():
with gr.Tab("Acoustic and Semantic Predictions"):
with gr.Row():
input_audio = gr.Audio(label="Input Audio", type="filepath")
submit_button = gr.Button("Submit")
output_label = [gr.Label("Prediction"), gr.Image(type='pil')] # Use a single Label instead of a list
# Set the function to be called when the button is clicked
submit_button.click(get_predictions, inputs=input_audio, outputs=output_label)
interface.launch()