File size: 3,534 Bytes
9f94bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
from fastai.vision.all import *
import gradio as gr

# Cargar los modelos
learn_emotion = load_learner('emotions_jey.pkl')
learn_emotion_labels = learn_emotion.dls.vocab

learn_sentiment = load_learner('sentiment_jey.pkl')
learn_sentiment_labels = learn_sentiment.dls.vocab

# Diccionario de mapeo de etiquetas en ingl茅s a etiquetas en espa帽ol
label_mapping = {
    'angry': 'enojado',
    'disgust': 'asco',
    'fear': 'miedo',
    'happy': 'feliz',
    'sad': 'triste',
    'surprise': 'sorpresa',
    'neutral': 'neutral',
    'negative': 'negativo',
    'positive': 'positivo'
}

# Funci贸n de predicci贸n
def predict(img_path):
    img = PILImage.create(img_path)
    
    pred_emotion, pred_emotion_idx, probs_emotion = learn_emotion.predict(img)
    pred_sentiment, pred_sentiment_idx, probs_sentiment = learn_sentiment.predict(img)
    
    emotions = {label_mapping[label]: float(prob) for label, prob in zip(learn_emotion_labels, probs_emotion)}
    sentiments = {label_mapping[label]: float(prob) for label, prob in zip(learn_sentiment_labels, probs_sentiment)}
        
    return emotions, sentiments

# Interfaz de Gradio
title = "Detector de emociones y sentimientos faciales"
description = (
    "Esta interfaz utiliza redes neuronales para detectar emociones y sentimientos a partir de im谩genes faciales."
)
article = "Esta herramienta proporciona una forma r谩pida de analizar emociones y sentimientos en im谩genes."

examples = [
    'PrivateTest_10131363.jpg',
    'angry1.png',
    'angry2.jpg',
    'happy1.jpg',
    'happy2.jpg',
    'neutral1.jpg',
    'neutral2.jpg'
]

iface = gr.Interface(
    fn=predict,
    inputs=gr.Image(shape=(48, 48), image_mode='L'),
    outputs=[gr.Label(label='Emoci贸n'), gr.Label(label='Sentimiento')],
    title=title,
    examples=examples,
    description=description,
    article=article,
    allow_flagging='never'
)

iface.launch(enable_queue=True)






#################

import os
from fastai.vision.all import *
import gradio as gr

# Cargar los modelos
learn_emotion = load_learner('emotions_jey.pkl')
learn_emotion_labels = learn_emotion.dls.vocab

learn_sentiment = load_learner('sentiment_jey.pkl')
learn_sentiment_labels = learn_sentiment.dls.vocab

# Funci贸n de predicci贸n
def predict(img_path):
    img = PILImage.create(img_path)
    
    pred_emotion, pred_emotion_idx, probs_emotion = learn_emotion.predict(img)
    pred_sentiment, pred_sentiment_idx, probs_sentiment = learn_sentiment.predict(img)
    
    emotions = {label: float(prob) for label, prob in zip(learn_emotion_labels, probs_emotion)}
    sentiments = {label: float(prob) for label, prob in zip(learn_sentiment_labels, probs_sentiment)}
        
    return emotions, sentiments

# Interfaz de Gradio
title = "Detector de emociones y sentimientos faciales "
description = (
    "Esta interfaz utiliza redes neuronales para detectar emociones y sentimientos a partir de im谩genes faciales."
)
article = "Esta herramienta proporciona una forma r谩pida de analizar emociones y sentimientos en im谩genes."

examples = [
    'PrivateTest_10131363.jpg',
    'angry1.png',
    'angry2.jpg',
    'happy1.jpg',
    'happy2.jpg',
    'neutral1.jpg',
    'neutral2.jpg'

]

iface = gr.Interface(
    fn=predict,
    inputs=gr.Image(shape=(48, 48), image_mode='L'),
    outputs=[gr.Label(label='Emotion'), gr.Label(label='Sentiment')],
    title=title,
    examples=examples,
    description=description,
    article=article,
    allow_flagging='never'
)

iface.launch(enable_queue=True)