Spaces:
Sleeping
Sleeping
import os | |
# For type hints | |
from typing import List | |
from langchain_core.vectorstores import VectorStoreRetriever | |
from langchain_openai import ChatOpenAI | |
from chainlit.types import AskFileResponse | |
from langchain_openai.embeddings import OpenAIEmbeddings | |
from langchain_core.runnables import Runnable | |
from langchain_core.documents import Document | |
# Libraries to be used | |
from langchain_community.document_loaders.text import TextLoader | |
from langchain_community.document_loaders.pdf import PyPDFLoader | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_wrappers.langchain_chat_models import MyChatOpenAI | |
from langchain_wrappers.langchain_embedding_models import MyOpenAIEmbeddings | |
from langchain_qdrant import QdrantVectorStore | |
from langchain_core.runnables import RunnablePassthrough, RunnableParallel, Runnable | |
from rag_prompts import system_msg, user_msg | |
import chainlit as cl | |
from dotenv import load_dotenv | |
# Cache | |
from langchain.globals import set_llm_cache, get_llm_cache | |
from langchain_community.cache import InMemoryCache | |
set_llm_cache(InMemoryCache()) | |
# Load the environment variables | |
load_dotenv() | |
# RAG chain | |
def Get_RAG_pipeline(retriever: VectorStoreRetriever, llm: ChatOpenAI)-> Runnable: | |
retriever = retriever.with_config({'run_name': 'RAG: Retriever'}) | |
prompt = ChatPromptTemplate([system_msg, user_msg]).with_config({'run_name': 'RAG Step2: Prompt (Augmented)'}) | |
llm = llm.with_config({'run_name': 'RAG Step3: LLM (Generation)'}) | |
def get_context(relevant_docs: List): | |
context = "" | |
for doc in relevant_docs: | |
context += doc.page_content + "\n" | |
return context | |
RAG_chain = RunnableParallel( | |
relevant_docs = retriever, | |
question = lambda x: x | |
).with_config({'run_name':'RAG Step1-1: Get relevant docs (Retrieval)'}) | RunnablePassthrough.assign( | |
context = lambda x: get_context(x['relevant_docs']) | |
).with_config({'run_name':'RAG Step1-2: Get context (Retrieval)'}) | prompt | llm | |
RAG_chain = RAG_chain.with_config({'run_name':'RAG pipeline'}) | |
return RAG_chain | |
# Split documents | |
def process_text_file(file: AskFileResponse)-> List[Document]: | |
import tempfile | |
if file.name.endswith('.txt'): | |
suffix = '.txt' | |
base_loader = TextLoader | |
elif file.name.endswith('.pdf'): | |
suffix = '.pdf' | |
base_loader = PyPDFLoader | |
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix=suffix) as temp_file: | |
temp_file_path = temp_file.name | |
with open(temp_file_path, 'wb') as f: | |
f.write(file.content) | |
document_loader = base_loader(temp_file_path) | |
# if file.name.endswith('.pdf'): | |
# with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".pdf") as temp_file: | |
# temp_file_path = temp_file.name | |
# with open(temp_file_path, "wb") as f: | |
# f.write(file.content) | |
# document_loader = PyPDFLoader(temp_file_path) | |
# elif file.name.endswith('.txt'): | |
# with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt") as temp_file: | |
# temp_file_path = temp_file.name | |
# with open(temp_file_path, "wb") as f: | |
# f.write(file.content) | |
# document_loader = TextLoader(temp_file_path, autodetect_encoding=True) | |
documents = document_loader.load() | |
text_splitter = RecursiveCharacterTextSplitter() | |
splitted_documents = [x.page_content for x in text_splitter.transform_documents(documents)] | |
return splitted_documents | |
async def on_chat_start(): | |
files = None | |
# Wait for the user to upload a file | |
while files == None: | |
files = await cl.AskFileMessage( | |
content="Please upload a Text File file to begin!", | |
accept=["text/plain", "application/pdf"], | |
max_size_mb=5, | |
timeout=180, | |
).send() | |
file = files[0] | |
msg = cl.Message( | |
content=f"Processing `{file.name}`...", disable_human_feedback=True | |
) | |
await msg.send() | |
# load the file | |
texts = process_text_file(file) | |
print(f"Processing {len(texts)} text chunks") | |
# Create a dict vector store | |
vector_db = await QdrantVectorStore.afrom_texts( | |
texts, MyOpenAIEmbeddings.from_model('small'), location=":memory:", collection_name="texts" | |
) | |
# Create a chain | |
RAG_chain = Get_RAG_pipeline( | |
retriever=vector_db.as_retriever(search_kwargs = {'k':3}), | |
llm=MyChatOpenAI.from_model() | |
) | |
# Let the user know that the system is ready | |
msg.content = f"Processing `{file.name}` done ({len(texts)} chunks in total). You can now ask questions!" | |
await msg.update() | |
cl.user_session.set("chain", RAG_chain) | |
async def main(message): | |
os.environ['LANGSMITH_PROJECT'] = os.getenv('LANGCHAIN_PROJECT') | |
chain = cl.user_session.get("chain") | |
msg = cl.Message(content="") | |
async for stream_resp in chain.astream(message.content): | |
await msg.stream_token(stream_resp.content) | |
await msg.send() |