File size: 14,273 Bytes
df2bc4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import streamlit as st
import pdfplumber
import docx
import os
import re
import numpy as np
import google.generativeai as palm
from sklearn.metrics.pairwise import cosine_similarity
import logging
import time
import uuid
import json
import firebase_admin
from firebase_admin import credentials, firestore
from dotenv import load_dotenv
import chromadb
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# Configuration class
class Config:
CHUNK_WORDS = 300
EMBEDDING_MODEL = "models/text-embedding-004"
TOP_N = 5
SYSTEM_PROMPT = (
"You are a helpful assistant. Answer the question using the provided context below. "
"Answer based on your knowledge if the context given is not enough."
)
GENERATION_MODEL = "models/gemini-1.5-flash"
# Initialize Firebase
def init_firebase():
"""Initialize Firebase with proper credential handling"""
if not firebase_admin._apps:
try:
firebase_cred = os.getenv("FIREBASE_CRED")
if not firebase_cred:
logger.error("Firebase credentials not found in environment variables")
st.error("Firebase configuration is missing. Please check your .env file.")
st.stop()
cred_dict = json.loads(firebase_cred)
cred = credentials.Certificate(cred_dict)
firebase_admin.initialize_app(cred)
logger.info("Firebase initialized successfully")
except json.JSONDecodeError:
logger.error("Invalid Firebase credentials format")
st.error("Firebase credentials are invalid. Please check your .env file.")
st.stop()
except Exception as e:
logger.error("Firebase initialization failed", exc_info=True)
st.error("Failed to initialize Firebase. Please contact support.")
st.stop()
# Initialize ChromaDB
def init_chroma():
"""Initialize ChromaDB with proper persistence handling"""
try:
persist_directory = "chroma_db"
os.makedirs(persist_directory, exist_ok=True)
client = chromadb.PersistentClient(path=persist_directory)
collection = client.get_or_create_collection(
name="document_embeddings",
metadata={"hnsw:space": "cosine"}
)
logger.info("ChromaDB initialized successfully")
return client, collection
except Exception as e:
logger.error("ChromaDB initialization failed", exc_info=True)
st.error("Failed to initialize ChromaDB. Please check your configuration.")
st.stop()
# Initialize services
init_firebase()
fs_client = firestore.client()
chroma_client, embedding_collection = init_chroma()
# Configure Palm API
API_KEY = os.getenv("GOOGLE_API_KEY")
if not API_KEY:
st.error("Google API key is not configured.")
st.stop()
palm.configure(api_key=API_KEY)
# Utility functions
@st.cache_data(show_spinner=True)
def generate_embedding_cached(text: str) -> list:
"""Generate embeddings with caching"""
logger.info(f"Generating embedding for text: {text[:50]}...")
try:
response = palm.embed_content(
model=Config.EMBEDDING_MODEL,
content=text,
task_type="retrieval_document"
)
if "embedding" not in response or not response["embedding"]:
logger.error("No embedding returned from API")
return [0.0] * 768
embedding = np.array(response["embedding"])
if embedding.ndim == 2:
embedding = embedding.flatten()
return embedding.tolist()
except Exception as e:
logger.error(f"Embedding generation failed: {e}")
return [0.0] * 768
def extract_text_from_file(uploaded_file) -> str:
"""Extract text from various file formats"""
file_name = uploaded_file.name.lower()
if file_name.endswith(".txt"):
return uploaded_file.read().decode("utf-8")
elif file_name.endswith(".pdf"):
with pdfplumber.open(uploaded_file) as pdf:
return "\n".join([page.extract_text() for page in pdf.pages if page.extract_text()])
elif file_name.endswith(".docx"):
doc = docx.Document(uploaded_file)
return "\n".join([para.text for para in doc.paragraphs])
else:
raise ValueError("Unsupported file type. Please upload a .txt, .pdf, or .docx file.")
def chunk_text(text: str) -> list[str]:
"""Split text into manageable chunks"""
max_words = Config.CHUNK_WORDS
paragraphs = [p.strip() for p in text.split("\n\n") if p.strip()]
chunks = []
current_chunk = ""
current_word_count = 0
for paragraph in paragraphs:
para_word_count = len(paragraph.split())
if para_word_count > max_words:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = ""
current_word_count = 0
sentences = re.split(r'(?<=[.!?])\s+', paragraph)
temp_chunk = ""
temp_word_count = 0
for sentence in sentences:
sentence_word_count = len(sentence.split())
if temp_word_count + sentence_word_count > max_words:
if temp_chunk:
chunks.append(temp_chunk.strip())
temp_chunk = sentence + " "
temp_word_count = sentence_word_count
else:
temp_chunk += sentence + " "
temp_word_count += sentence_word_count
if temp_chunk:
chunks.append(temp_chunk.strip())
else:
if current_word_count + para_word_count > max_words:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = paragraph + "\n\n"
current_word_count = para_word_count
else:
current_chunk += paragraph + "\n\n"
current_word_count += para_word_count
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def process_document(uploaded_file) -> None:
"""Process document and store in ChromaDB"""
try:
# Clear existing session state
keys_to_clear = ["document_text", "document_chunks", "document_embeddings"]
for key in keys_to_clear:
st.session_state.pop(key, None)
# Extract and validate text
file_text = extract_text_from_file(uploaded_file)
if not file_text.strip():
st.error("The uploaded file contains no valid text.")
return
# Process text into chunks
chunks = chunk_text(file_text)
if not chunks:
st.error("Failed to split text into chunks.")
return
# Generate embeddings
embeddings = []
chunk_ids = []
progress_bar = st.progress(0) # β
Correctly initialize progress bar
for i, chunk in enumerate(chunks):
chunk_id = str(uuid.uuid4())
embedding = generate_embedding_cached(chunk)
if not any(embedding): # Ensure embedding is valid
continue
embeddings.append(embedding)
chunk_ids.append(chunk_id)
progress_bar.progress((i + 1) / len(chunks)) # β
Update progress bar
if not embeddings:
st.error("Failed to generate valid embeddings for the document.")
return
# Ensure `embedding_collection` is properly initialized
if embedding_collection is None:
st.error("ChromaDB collection is not initialized.")
return
# Save to ChromaDB
embedding_collection.add(
ids=chunk_ids,
documents=chunks[:len(embeddings)],
embeddings=embeddings,
metadatas=[{"chunk_index": idx} for idx in range(len(embeddings))]
)
# Update session state
st.session_state.update({
"document_text": file_text,
"document_chunks": chunks[:len(embeddings)],
"document_embeddings": embeddings,
"chunk_ids": chunk_ids
})
if not st.session_state.get("doc_processed", False):
st.success("Document processing complete! You can now start chatting.")
st.session_state.doc_processed = True
except Exception as e:
logger.error(f"Document processing failed: {e}")
st.error(f"An error occurred while processing the document: {e}")
def search_query(query: str) -> list[tuple[str, float]]:
"""Search for relevant document chunks"""
try:
query_embedding = generate_embedding_cached(query)
results = embedding_collection.query(
query_embeddings=[query_embedding],
n_results=Config.TOP_N
)
results_data = []
for i, metadata in enumerate(results["metadatas"]):
chunk_index = metadata["chunk_index"]
similarity_score = results["distances"][i]
results_data.append((st.session_state["document_chunks"][chunk_index], similarity_score))
return results_data
except Exception as e:
logger.error(f"Search query failed: {e}")
return []
def generate_answer(user_query: str, context: str) -> str:
"""Generate answer using Palm API"""
prompt = (
f"System: {Config.SYSTEM_PROMPT}\n\n"
f"Context:\n{context}\n\n"
f"User: {user_query}\nAssistant:"
)
try:
model = palm.GenerativeModel(Config.GENERATION_MODEL)
response = model.generate_content(prompt)
return response.text if hasattr(response, "text") else response
except Exception as e:
logger.error(f"Answer generation failed: {e}")
return "I'm sorry, I encountered an error generating a response."
# Firebase functions
def save_conversation_to_firestore(session_id, user_question, assistant_answer, feedback=None):
"""Save conversation to Firestore"""
conv_ref = fs_client.collection("sessions").document(session_id).collection("conversations")
data = {
"user_question": user_question,
"assistant_answer": assistant_answer,
"feedback": feedback,
"timestamp": firestore.SERVER_TIMESTAMP
}
doc_ref = conv_ref.add(data)
return doc_ref[1].id
def update_feedback_in_firestore(session_id, conversation_id, feedback):
"""Update feedback in Firestore"""
conv_doc = fs_client.collection("sessions").document(session_id).collection("conversations").document(conversation_id)
conv_doc.update({"feedback": feedback})
def handle_feedback(feedback_val):
"""Handle user feedback"""
update_feedback_in_firestore(
st.session_state.session_id,
st.session_state.latest_conversation_id,
feedback_val
)
st.session_state.conversations[-1]["feedback"] = feedback_val
# Chat interface
def chat_app():
"""Main chat interface"""
if "conversations" not in st.session_state:
st.session_state.conversations = []
if "session_id" not in st.session_state:
st.session_state.session_id = str(uuid.uuid4())
# Display conversation history
for conv in st.session_state.conversations:
with st.chat_message("user"):
st.write(conv["user_question"])
with st.chat_message("assistant"):
st.write(conv["assistant_answer"])
if conv.get("feedback"):
st.markdown(f"**Feedback:** {conv['feedback']}")
# Handle new user input
user_input = st.chat_input("Type your message here")
if user_input:
with st.chat_message("user"):
st.write(user_input)
results = search_query(user_input)
context = "\n\n".join([chunk for chunk, score in results]) if results else ""
answer = generate_answer(user_input, context)
with st.chat_message("assistant"):
st.write(answer)
conversation_id = save_conversation_to_firestore(
st.session_state.session_id,
user_question=user_input,
assistant_answer=answer
)
st.session_state.latest_conversation_id = conversation_id
st.session_state.conversations.append({
"user_question": user_input,
"assistant_answer": answer,
})
# Add feedback buttons
if "feedback" not in st.session_state.conversations[-1]:
col1, col2, col3, col4, col5, col6, col7, col8, col9, col10 = st.columns(10)
col1.button("π", key=f"feedback_like_{len(st.session_state.conversations)}",
on_click=handle_feedback, args=("positive",))
col2.button("π", key=f"feedback_dislike_{len(st.session_state.conversations)}",
on_click=handle_feedback, args=("negative",))
def main():
"""Main application"""
st.title("Chat with your files")
# Sidebar for file upload
st.sidebar.header("Upload Document")
uploaded_file = st.sidebar.file_uploader("Upload (.txt, .pdf, .docx)", type=["txt", "pdf", "docx"])
if uploaded_file and not st.session_state.get("doc_processed", False):
process_document(uploaded_file)
if "document_text" in st.session_state:
chat_app()
else:
st.info("Please upload and process a document from the sidebar to start chatting.")
# Footer
st.markdown(
"""
<div style="position: fixed; right: 10px; bottom: 10px; font-size: 12px; z-index: 9999; text-align: right;">
Made by Danny.<br>
Your questions, our response as well as your feedback will be saved for evaluation purposes.
</div>
""",
unsafe_allow_html=True
)
if __name__ == "__main__":
main() |