Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pdfplumber
|
| 3 |
+
import docx
|
| 4 |
+
import os
|
| 5 |
+
import re
|
| 6 |
+
import numpy as np
|
| 7 |
+
import google.generativeai as palm
|
| 8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 9 |
+
import logging
|
| 10 |
+
import time
|
| 11 |
+
import uuid
|
| 12 |
+
import json
|
| 13 |
+
import firebase_admin
|
| 14 |
+
from firebase_admin import credentials, firestore
|
| 15 |
+
from dotenv import load_dotenv
|
| 16 |
+
import chromadb
|
| 17 |
+
|
| 18 |
+
# Configure logging
|
| 19 |
+
logging.basicConfig(
|
| 20 |
+
level=logging.INFO,
|
| 21 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 22 |
+
handlers=[logging.StreamHandler()]
|
| 23 |
+
)
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
# Load environment variables
|
| 27 |
+
load_dotenv()
|
| 28 |
+
|
| 29 |
+
# Configuration class
|
| 30 |
+
class Config:
|
| 31 |
+
CHUNK_WORDS = 300
|
| 32 |
+
EMBEDDING_MODEL = "models/text-embedding-004"
|
| 33 |
+
TOP_N = 5
|
| 34 |
+
SYSTEM_PROMPT = (
|
| 35 |
+
"You are a helpful assistant. Answer the question using the provided context below. "
|
| 36 |
+
"Answer based on your knowledge if the context given is not enough."
|
| 37 |
+
)
|
| 38 |
+
GENERATION_MODEL = "models/gemini-1.5-flash"
|
| 39 |
+
|
| 40 |
+
# Initialize Firebase
|
| 41 |
+
def init_firebase():
|
| 42 |
+
"""Initialize Firebase with proper credential handling"""
|
| 43 |
+
if not firebase_admin._apps:
|
| 44 |
+
try:
|
| 45 |
+
firebase_cred = os.getenv("FIREBASE_CRED")
|
| 46 |
+
if not firebase_cred:
|
| 47 |
+
logger.error("Firebase credentials not found in environment variables")
|
| 48 |
+
st.error("Firebase configuration is missing. Please check your .env file.")
|
| 49 |
+
st.stop()
|
| 50 |
+
|
| 51 |
+
cred_dict = json.loads(firebase_cred)
|
| 52 |
+
cred = credentials.Certificate(cred_dict)
|
| 53 |
+
firebase_admin.initialize_app(cred)
|
| 54 |
+
logger.info("Firebase initialized successfully")
|
| 55 |
+
|
| 56 |
+
except json.JSONDecodeError:
|
| 57 |
+
logger.error("Invalid Firebase credentials format")
|
| 58 |
+
st.error("Firebase credentials are invalid. Please check your .env file.")
|
| 59 |
+
st.stop()
|
| 60 |
+
except Exception as e:
|
| 61 |
+
logger.error("Firebase initialization failed", exc_info=True)
|
| 62 |
+
st.error("Failed to initialize Firebase. Please contact support.")
|
| 63 |
+
st.stop()
|
| 64 |
+
|
| 65 |
+
# Initialize ChromaDB
|
| 66 |
+
def init_chroma():
|
| 67 |
+
"""Initialize ChromaDB with proper persistence handling"""
|
| 68 |
+
try:
|
| 69 |
+
persist_directory = "chroma_db"
|
| 70 |
+
os.makedirs(persist_directory, exist_ok=True)
|
| 71 |
+
|
| 72 |
+
client = chromadb.PersistentClient(path=persist_directory)
|
| 73 |
+
collection = client.get_or_create_collection(
|
| 74 |
+
name="document_embeddings",
|
| 75 |
+
metadata={"hnsw:space": "cosine"}
|
| 76 |
+
)
|
| 77 |
+
logger.info("ChromaDB initialized successfully")
|
| 78 |
+
return client, collection
|
| 79 |
+
except Exception as e:
|
| 80 |
+
logger.error("ChromaDB initialization failed", exc_info=True)
|
| 81 |
+
st.error("Failed to initialize ChromaDB. Please check your configuration.")
|
| 82 |
+
st.stop()
|
| 83 |
+
|
| 84 |
+
# Initialize services
|
| 85 |
+
init_firebase()
|
| 86 |
+
fs_client = firestore.client()
|
| 87 |
+
chroma_client, embedding_collection = init_chroma()
|
| 88 |
+
|
| 89 |
+
# Configure Palm API
|
| 90 |
+
API_KEY = os.getenv("GOOGLE_API_KEY")
|
| 91 |
+
if not API_KEY:
|
| 92 |
+
st.error("Google API key is not configured.")
|
| 93 |
+
st.stop()
|
| 94 |
+
palm.configure(api_key=API_KEY)
|
| 95 |
+
|
| 96 |
+
# Utility functions
|
| 97 |
+
@st.cache_data(show_spinner=True)
|
| 98 |
+
def generate_embedding_cached(text: str) -> list:
|
| 99 |
+
"""Generate embeddings with caching"""
|
| 100 |
+
logger.info(f"Generating embedding for text: {text[:50]}...")
|
| 101 |
+
try:
|
| 102 |
+
response = palm.embed_content(
|
| 103 |
+
model=Config.EMBEDDING_MODEL,
|
| 104 |
+
content=text,
|
| 105 |
+
task_type="retrieval_document"
|
| 106 |
+
)
|
| 107 |
+
if "embedding" not in response or not response["embedding"]:
|
| 108 |
+
logger.error("No embedding returned from API")
|
| 109 |
+
return [0.0] * 768
|
| 110 |
+
|
| 111 |
+
embedding = np.array(response["embedding"])
|
| 112 |
+
if embedding.ndim == 2:
|
| 113 |
+
embedding = embedding.flatten()
|
| 114 |
+
return embedding.tolist()
|
| 115 |
+
except Exception as e:
|
| 116 |
+
logger.error(f"Embedding generation failed: {e}")
|
| 117 |
+
return [0.0] * 768
|
| 118 |
+
|
| 119 |
+
def extract_text_from_file(uploaded_file) -> str:
|
| 120 |
+
"""Extract text from various file formats"""
|
| 121 |
+
file_name = uploaded_file.name.lower()
|
| 122 |
+
|
| 123 |
+
if file_name.endswith(".txt"):
|
| 124 |
+
return uploaded_file.read().decode("utf-8")
|
| 125 |
+
elif file_name.endswith(".pdf"):
|
| 126 |
+
with pdfplumber.open(uploaded_file) as pdf:
|
| 127 |
+
return "\n".join([page.extract_text() for page in pdf.pages if page.extract_text()])
|
| 128 |
+
elif file_name.endswith(".docx"):
|
| 129 |
+
doc = docx.Document(uploaded_file)
|
| 130 |
+
return "\n".join([para.text for para in doc.paragraphs])
|
| 131 |
+
else:
|
| 132 |
+
raise ValueError("Unsupported file type. Please upload a .txt, .pdf, or .docx file.")
|
| 133 |
+
|
| 134 |
+
def chunk_text(text: str) -> list[str]:
|
| 135 |
+
"""Split text into manageable chunks"""
|
| 136 |
+
max_words = Config.CHUNK_WORDS
|
| 137 |
+
paragraphs = [p.strip() for p in text.split("\n\n") if p.strip()]
|
| 138 |
+
chunks = []
|
| 139 |
+
current_chunk = ""
|
| 140 |
+
current_word_count = 0
|
| 141 |
+
|
| 142 |
+
for paragraph in paragraphs:
|
| 143 |
+
para_word_count = len(paragraph.split())
|
| 144 |
+
|
| 145 |
+
if para_word_count > max_words:
|
| 146 |
+
if current_chunk:
|
| 147 |
+
chunks.append(current_chunk.strip())
|
| 148 |
+
current_chunk = ""
|
| 149 |
+
current_word_count = 0
|
| 150 |
+
|
| 151 |
+
sentences = re.split(r'(?<=[.!?])\s+', paragraph)
|
| 152 |
+
temp_chunk = ""
|
| 153 |
+
temp_word_count = 0
|
| 154 |
+
|
| 155 |
+
for sentence in sentences:
|
| 156 |
+
sentence_word_count = len(sentence.split())
|
| 157 |
+
if temp_word_count + sentence_word_count > max_words:
|
| 158 |
+
if temp_chunk:
|
| 159 |
+
chunks.append(temp_chunk.strip())
|
| 160 |
+
temp_chunk = sentence + " "
|
| 161 |
+
temp_word_count = sentence_word_count
|
| 162 |
+
else:
|
| 163 |
+
temp_chunk += sentence + " "
|
| 164 |
+
temp_word_count += sentence_word_count
|
| 165 |
+
|
| 166 |
+
if temp_chunk:
|
| 167 |
+
chunks.append(temp_chunk.strip())
|
| 168 |
+
else:
|
| 169 |
+
if current_word_count + para_word_count > max_words:
|
| 170 |
+
if current_chunk:
|
| 171 |
+
chunks.append(current_chunk.strip())
|
| 172 |
+
current_chunk = paragraph + "\n\n"
|
| 173 |
+
current_word_count = para_word_count
|
| 174 |
+
else:
|
| 175 |
+
current_chunk += paragraph + "\n\n"
|
| 176 |
+
current_word_count += para_word_count
|
| 177 |
+
|
| 178 |
+
if current_chunk:
|
| 179 |
+
chunks.append(current_chunk.strip())
|
| 180 |
+
return chunks
|
| 181 |
+
|
| 182 |
+
def process_document(uploaded_file) -> None:
|
| 183 |
+
"""Process document and store in ChromaDB"""
|
| 184 |
+
try:
|
| 185 |
+
# Clear existing session state
|
| 186 |
+
keys_to_clear = ["document_text", "document_chunks", "document_embeddings"]
|
| 187 |
+
for key in keys_to_clear:
|
| 188 |
+
st.session_state.pop(key, None)
|
| 189 |
+
|
| 190 |
+
# Extract and validate text
|
| 191 |
+
file_text = extract_text_from_file(uploaded_file)
|
| 192 |
+
if not file_text.strip():
|
| 193 |
+
st.error("The uploaded file contains no valid text.")
|
| 194 |
+
return
|
| 195 |
+
|
| 196 |
+
# Process text into chunks
|
| 197 |
+
chunks = chunk_text(file_text)
|
| 198 |
+
if not chunks:
|
| 199 |
+
st.error("Failed to split text into chunks.")
|
| 200 |
+
return
|
| 201 |
+
|
| 202 |
+
# Generate embeddings
|
| 203 |
+
embeddings = []
|
| 204 |
+
chunk_ids = []
|
| 205 |
+
|
| 206 |
+
progress_bar = st.progress(0) # β
Correctly initialize progress bar
|
| 207 |
+
|
| 208 |
+
for i, chunk in enumerate(chunks):
|
| 209 |
+
chunk_id = str(uuid.uuid4())
|
| 210 |
+
embedding = generate_embedding_cached(chunk)
|
| 211 |
+
|
| 212 |
+
if not any(embedding): # Ensure embedding is valid
|
| 213 |
+
continue
|
| 214 |
+
|
| 215 |
+
embeddings.append(embedding)
|
| 216 |
+
chunk_ids.append(chunk_id)
|
| 217 |
+
progress_bar.progress((i + 1) / len(chunks)) # β
Update progress bar
|
| 218 |
+
|
| 219 |
+
if not embeddings:
|
| 220 |
+
st.error("Failed to generate valid embeddings for the document.")
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
# Ensure `embedding_collection` is properly initialized
|
| 224 |
+
if embedding_collection is None:
|
| 225 |
+
st.error("ChromaDB collection is not initialized.")
|
| 226 |
+
return
|
| 227 |
+
|
| 228 |
+
# Save to ChromaDB
|
| 229 |
+
embedding_collection.add(
|
| 230 |
+
ids=chunk_ids,
|
| 231 |
+
documents=chunks[:len(embeddings)],
|
| 232 |
+
embeddings=embeddings,
|
| 233 |
+
metadatas=[{"chunk_index": idx} for idx in range(len(embeddings))]
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
# Update session state
|
| 237 |
+
st.session_state.update({
|
| 238 |
+
"document_text": file_text,
|
| 239 |
+
"document_chunks": chunks[:len(embeddings)],
|
| 240 |
+
"document_embeddings": embeddings,
|
| 241 |
+
"chunk_ids": chunk_ids
|
| 242 |
+
})
|
| 243 |
+
|
| 244 |
+
if not st.session_state.get("doc_processed", False):
|
| 245 |
+
st.success("Document processing complete! You can now start chatting.")
|
| 246 |
+
st.session_state.doc_processed = True
|
| 247 |
+
|
| 248 |
+
except Exception as e:
|
| 249 |
+
logger.error(f"Document processing failed: {e}")
|
| 250 |
+
st.error(f"An error occurred while processing the document: {e}")
|
| 251 |
+
|
| 252 |
+
def search_query(query: str) -> list[tuple[str, float]]:
|
| 253 |
+
"""Search for relevant document chunks"""
|
| 254 |
+
try:
|
| 255 |
+
query_embedding = generate_embedding_cached(query)
|
| 256 |
+
|
| 257 |
+
results = embedding_collection.query(
|
| 258 |
+
query_embeddings=[query_embedding],
|
| 259 |
+
n_results=Config.TOP_N
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
results_data = []
|
| 263 |
+
for i, metadata in enumerate(results["metadatas"]):
|
| 264 |
+
chunk_index = metadata["chunk_index"]
|
| 265 |
+
similarity_score = results["distances"][i]
|
| 266 |
+
results_data.append((st.session_state["document_chunks"][chunk_index], similarity_score))
|
| 267 |
+
|
| 268 |
+
return results_data
|
| 269 |
+
except Exception as e:
|
| 270 |
+
logger.error(f"Search query failed: {e}")
|
| 271 |
+
return []
|
| 272 |
+
|
| 273 |
+
def generate_answer(user_query: str, context: str) -> str:
|
| 274 |
+
"""Generate answer using Palm API"""
|
| 275 |
+
prompt = (
|
| 276 |
+
f"System: {Config.SYSTEM_PROMPT}\n\n"
|
| 277 |
+
f"Context:\n{context}\n\n"
|
| 278 |
+
f"User: {user_query}\nAssistant:"
|
| 279 |
+
)
|
| 280 |
+
try:
|
| 281 |
+
model = palm.GenerativeModel(Config.GENERATION_MODEL)
|
| 282 |
+
response = model.generate_content(prompt)
|
| 283 |
+
return response.text if hasattr(response, "text") else response
|
| 284 |
+
except Exception as e:
|
| 285 |
+
logger.error(f"Answer generation failed: {e}")
|
| 286 |
+
return "I'm sorry, I encountered an error generating a response."
|
| 287 |
+
|
| 288 |
+
# Firebase functions
|
| 289 |
+
def save_conversation_to_firestore(session_id, user_question, assistant_answer, feedback=None):
|
| 290 |
+
"""Save conversation to Firestore"""
|
| 291 |
+
conv_ref = fs_client.collection("sessions").document(session_id).collection("conversations")
|
| 292 |
+
data = {
|
| 293 |
+
"user_question": user_question,
|
| 294 |
+
"assistant_answer": assistant_answer,
|
| 295 |
+
"feedback": feedback,
|
| 296 |
+
"timestamp": firestore.SERVER_TIMESTAMP
|
| 297 |
+
}
|
| 298 |
+
doc_ref = conv_ref.add(data)
|
| 299 |
+
return doc_ref[1].id
|
| 300 |
+
|
| 301 |
+
def update_feedback_in_firestore(session_id, conversation_id, feedback):
|
| 302 |
+
"""Update feedback in Firestore"""
|
| 303 |
+
conv_doc = fs_client.collection("sessions").document(session_id).collection("conversations").document(conversation_id)
|
| 304 |
+
conv_doc.update({"feedback": feedback})
|
| 305 |
+
|
| 306 |
+
def handle_feedback(feedback_val):
|
| 307 |
+
"""Handle user feedback"""
|
| 308 |
+
update_feedback_in_firestore(
|
| 309 |
+
st.session_state.session_id,
|
| 310 |
+
st.session_state.latest_conversation_id,
|
| 311 |
+
feedback_val
|
| 312 |
+
)
|
| 313 |
+
st.session_state.conversations[-1]["feedback"] = feedback_val
|
| 314 |
+
|
| 315 |
+
# Chat interface
|
| 316 |
+
def chat_app():
|
| 317 |
+
"""Main chat interface"""
|
| 318 |
+
if "conversations" not in st.session_state:
|
| 319 |
+
st.session_state.conversations = []
|
| 320 |
+
if "session_id" not in st.session_state:
|
| 321 |
+
st.session_state.session_id = str(uuid.uuid4())
|
| 322 |
+
|
| 323 |
+
# Display conversation history
|
| 324 |
+
for conv in st.session_state.conversations:
|
| 325 |
+
with st.chat_message("user"):
|
| 326 |
+
st.write(conv["user_question"])
|
| 327 |
+
with st.chat_message("assistant"):
|
| 328 |
+
st.write(conv["assistant_answer"])
|
| 329 |
+
if conv.get("feedback"):
|
| 330 |
+
st.markdown(f"**Feedback:** {conv['feedback']}")
|
| 331 |
+
|
| 332 |
+
# Handle new user input
|
| 333 |
+
user_input = st.chat_input("Type your message here")
|
| 334 |
+
if user_input:
|
| 335 |
+
with st.chat_message("user"):
|
| 336 |
+
st.write(user_input)
|
| 337 |
+
|
| 338 |
+
results = search_query(user_input)
|
| 339 |
+
context = "\n\n".join([chunk for chunk, score in results]) if results else ""
|
| 340 |
+
answer = generate_answer(user_input, context)
|
| 341 |
+
|
| 342 |
+
with st.chat_message("assistant"):
|
| 343 |
+
st.write(answer)
|
| 344 |
+
|
| 345 |
+
conversation_id = save_conversation_to_firestore(
|
| 346 |
+
st.session_state.session_id,
|
| 347 |
+
user_question=user_input,
|
| 348 |
+
assistant_answer=answer
|
| 349 |
+
)
|
| 350 |
+
st.session_state.latest_conversation_id = conversation_id
|
| 351 |
+
st.session_state.conversations.append({
|
| 352 |
+
"user_question": user_input,
|
| 353 |
+
"assistant_answer": answer,
|
| 354 |
+
})
|
| 355 |
+
|
| 356 |
+
# Add feedback buttons
|
| 357 |
+
if "feedback" not in st.session_state.conversations[-1]:
|
| 358 |
+
col1, col2, col3, col4, col5, col6, col7, col8, col9, col10 = st.columns(10)
|
| 359 |
+
col1.button("π", key=f"feedback_like_{len(st.session_state.conversations)}",
|
| 360 |
+
on_click=handle_feedback, args=("positive",))
|
| 361 |
+
col2.button("π", key=f"feedback_dislike_{len(st.session_state.conversations)}",
|
| 362 |
+
on_click=handle_feedback, args=("negative",))
|
| 363 |
+
|
| 364 |
+
def main():
|
| 365 |
+
"""Main application"""
|
| 366 |
+
st.title("Chat with your files")
|
| 367 |
+
|
| 368 |
+
# Sidebar for file upload
|
| 369 |
+
st.sidebar.header("Upload Document")
|
| 370 |
+
uploaded_file = st.sidebar.file_uploader("Upload (.txt, .pdf, .docx)", type=["txt", "pdf", "docx"])
|
| 371 |
+
|
| 372 |
+
if uploaded_file and not st.session_state.get("doc_processed", False):
|
| 373 |
+
process_document(uploaded_file)
|
| 374 |
+
|
| 375 |
+
if "document_text" in st.session_state:
|
| 376 |
+
chat_app()
|
| 377 |
+
else:
|
| 378 |
+
st.info("Please upload and process a document from the sidebar to start chatting.")
|
| 379 |
+
|
| 380 |
+
# Footer
|
| 381 |
+
st.markdown(
|
| 382 |
+
"""
|
| 383 |
+
<div style="position: fixed; right: 10px; bottom: 10px; font-size: 12px; z-index: 9999; text-align: right;">
|
| 384 |
+
Made by Danny.<br>
|
| 385 |
+
Your questions, our response as well as your feedback will be saved for evaluation purposes.
|
| 386 |
+
</div>
|
| 387 |
+
""",
|
| 388 |
+
unsafe_allow_html=True
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
if __name__ == "__main__":
|
| 392 |
+
main()
|