jennysun's picture
Duplicate from gligen/demo
81ba850
raw
history blame
11.6 kB
from tkinter.messagebox import NO
import torch
import json
from collections import defaultdict
from PIL import Image, ImageDraw
from copy import deepcopy
import os
import torchvision.transforms as transforms
import torchvision
from .base_dataset import BaseDataset, check_filenames_in_zipdata, recalculate_box_and_verify_if_valid
from io import BytesIO
import random
from .tsv import TSVFile
from io import BytesIO
import base64
from PIL import Image
import numpy as np
def decode_base64_to_pillow(image_b64):
return Image.open(BytesIO(base64.b64decode(image_b64))).convert('RGB')
def decode_tensor_from_string(arr_str, use_tensor=True):
arr = np.frombuffer(base64.b64decode(arr_str), dtype='float32')
if use_tensor:
arr = torch.from_numpy(arr)
return arr
def decode_item(item):
item = json.loads(item)
item['image'] = decode_base64_to_pillow(item['image'])
for anno in item['annos']:
anno['image_embedding_before'] = decode_tensor_from_string(anno['image_embedding_before'])
anno['text_embedding_before'] = decode_tensor_from_string(anno['text_embedding_before'])
anno['image_embedding_after'] = decode_tensor_from_string(anno['image_embedding_after'])
anno['text_embedding_after'] = decode_tensor_from_string(anno['text_embedding_after'])
return item
def check_unique(images, fields):
for field in fields:
temp_list = []
for img_info in images:
temp_list.append(img_info[field])
assert len(set(temp_list)) == len(temp_list), field
def clean_data(data):
for data_info in data:
data_info.pop("original_img_id", None)
data_info.pop("original_id", None)
data_info.pop("sentence_id", None) # sentence id for each image (multiple sentences for one image)
data_info.pop("dataset_name", None)
data_info.pop("data_source", None)
data_info["data_id"] = data_info.pop("id")
def clean_annotations(annotations):
for anno_info in annotations:
anno_info.pop("iscrowd", None) # I have checked that all 0 for flickr, vg, coco
anno_info.pop("category_id", None) # I have checked that all 1 for flickr vg. This is not always 1 for coco, but I do not think we need this annotation
anno_info.pop("area", None)
# anno_info.pop("id", None)
anno_info["data_id"] = anno_info.pop("image_id")
def draw_box(img, boxes):
draw = ImageDraw.Draw(img)
for box in boxes:
draw.rectangle([box[0], box[1], box[2], box[3]], outline ="red", width=2) # x0 y0 x1 y1
return img
def xyhw2xyxy(box):
x0, y0, w, h = box
return [ x0, y0, x0+w, y0+h ]
def make_a_sentence(obj_names, clean=False):
if clean:
obj_names = [ name[:-6] if ("-other" in name) else name for name in obj_names]
caption = ""
tokens_positive = []
for obj_name in obj_names:
start_len = len(caption)
caption += obj_name
end_len = len(caption)
caption += ", "
tokens_positive.append(
[[start_len, end_len]] # in real caption, positive tokens can be disjoint, thus using list of list
)
caption = caption[:-2] # remove last ", "
return caption #, tokens_positive
def mask_for_random_drop_text_or_image_feature(masks, random_drop_embedding):
"""
input masks tell how many valid grounding tokens for this image
e.g., 1,1,1,1,0,0,0,0,0,0...
If random_drop_embedding=both. we will random drop either image or
text feature for each token,
but we always make sure there is at least one feature used.
In other words, the following masks are not valid
(because for the second obj, no feature at all):
image: 1,0,1,1,0,0,0,0,0
text: 1,0,0,0,0,0,0,0,0
if random_drop_embedding=image. we will random drop image feature
and always keep the text one.
"""
N = masks.shape[0]
if random_drop_embedding=='both':
temp_mask = torch.ones(2,N)
for i in range(N):
if random.uniform(0, 1) < 0.5: # else keep both features
idx = random.sample([0,1], 1)[0] # randomly choose to drop image or text feature
temp_mask[idx,i] = 0
image_masks = temp_mask[0]*masks
text_masks = temp_mask[1]*masks
if random_drop_embedding=='image':
image_masks = masks*(torch.rand(N)>0.5)*1
text_masks = masks
return image_masks, text_masks
def project(x, projection_matrix):
"""
x (Batch*768) should be the penultimate feature of CLIP (before projection)
projection_matrix (768*768) is the CLIP projection matrix, which should be weight.data of Linear layer
defined in CLIP (out_dim, in_dim), thus we need to apply transpose below.
this function will return the CLIP feature (without normalziation)
"""
return [email protected](projection_matrix, 0, 1)
def inv_project(y, projection_matrix):
"""
y (Batch*768) should be the CLIP feature (after projection)
projection_matrix (768*768) is the CLIP projection matrix, which should be weight.data of Linear layer
defined in CLIP (out_dim, in_dim).
this function will return the CLIP penultimate feature.
Note: to make sure getting the correct penultimate feature, the input y should not be normalized.
If it is normalized, then the result will be scaled by CLIP feature norm, which is unknown.
"""
return [email protected](torch.linalg.inv(projection_matrix), 0, 1)
class TSVDataset(BaseDataset):
def __init__(self,
tsv_path,
which_embedder='clip',
which_layer=['after','after'], # text and image
prob_use_caption=1,
random_drop_embedding='none',
image_size=256,
min_box_size=0.01,
max_boxes_per_data=8,
max_images=None, # set as 30K used to eval
random_crop = False,
random_flip = True,
):
image_root = "a placeholder path as we are using tsv here"
super().__init__(image_root, random_crop, random_flip, image_size)
self.tsv_path = tsv_path
self.which_embedder = which_embedder
self.prob_use_caption = prob_use_caption
self.random_drop_embedding = random_drop_embedding
self.min_box_size = min_box_size
self.max_boxes_per_data = max_boxes_per_data
self.max_images = max_images
assert which_layer in [ ['after','after'], ['before','after_renorm'], ['before','after_reproject'] ]
assert random_drop_embedding in ['none', 'both', 'image']
self.which_layer_text = which_layer[0]
self.which_layer_image = which_layer[1]
#self.projection_matrix = torch.load(os.path.join(os.path.dirname(__file__), 'projection_matrix') )
self.projection_matrix = torch.load('projection_matrix.pth')
# Load tsv data
self.tsv_file = TSVFile(self.tsv_path)
# Load preprocessed name embedding
if which_embedder == 'bert':
self.embedding_len = 1280
elif which_embedder == 'clip':
self.embedding_len = 768
else:
assert False
def total_images(self):
return len(self)
def get_item_from_tsv(self, index):
_, item = self.tsv_file[index]
item = decode_item(item)
return item
def mapping(self, image_embedding):
if self.which_layer_image == 'after':
# both use CLIP aligned feature
return image_embedding
elif self.which_layer_image == 'after_renorm':
# text use before, but image use after projection but normalize to 28.7
return image_embedding*28.7
elif self.which_layer_image == 'after_reproject':
image_embedding = project( image_embedding.unsqueeze(0), self.projection_matrix.T )
image_embedding = image_embedding.squeeze(0)
image_embedding = image_embedding / image_embedding.norm()
image_embedding = image_embedding * 28.7
return image_embedding
def __getitem__(self, index):
if self.max_boxes_per_data > 99:
assert False, "Are you sure setting such large number of boxes?"
raw_item = self.get_item_from_tsv(index)
is_det = raw_item.get('is_det', False) # if it is from detection (such as o365), then we will make a caption
out = {}
# -------------------- id and image ------------------- #
out['id'] = raw_item['data_id']
image = raw_item['image']
image_tensor, trans_info = self.transform_image(image)
out["image"] = image_tensor
# -------------------- grounding token ------------------- #
annos = raw_item['annos']
areas = []
all_boxes = []
all_masks = []
all_text_embeddings = []
all_image_embeddings = []
if is_det:
all_category_names = []
text_embedding_name = 'text_embedding_before' if self.which_layer_text == 'before' else 'text_embedding_after'
image_embedding_name = 'image_embedding_after'
for anno in annos:
x, y, w, h = anno['bbox']
valid, (x0, y0, x1, y1) = recalculate_box_and_verify_if_valid(x, y, w, h, trans_info, self.image_size, self.min_box_size)
if valid:
areas.append( (x1-x0)*(y1-y0) )
all_boxes.append( torch.tensor([x0,y0,x1,y1]) / self.image_size ) # scale to 0-1
all_masks.append(1)
all_text_embeddings.append(anno[text_embedding_name])
all_image_embeddings.append( self.mapping(anno[image_embedding_name]) )
if is_det:
all_category_names.append(anno["category_name"])
wanted_idxs = torch.tensor(areas).sort(descending=True)[1]
wanted_idxs = wanted_idxs[0:self.max_boxes_per_data]
boxes = torch.zeros(self.max_boxes_per_data, 4)
masks = torch.zeros(self.max_boxes_per_data)
text_embeddings = torch.zeros(self.max_boxes_per_data, self.embedding_len)
image_embeddings = torch.zeros(self.max_boxes_per_data, self.embedding_len)
if is_det:
category_names = []
for i, idx in enumerate(wanted_idxs):
boxes[i] = all_boxes[idx]
masks[i] = all_masks[idx]
text_embeddings[i] = all_text_embeddings[idx]
image_embeddings[i] = all_image_embeddings[idx]
if is_det:
category_names.append(all_category_names[idx])
if self.random_drop_embedding != 'none':
image_masks, text_masks = mask_for_random_drop_text_or_image_feature(masks, self.random_drop_embedding)
else:
image_masks = masks
text_masks = masks
out["boxes"] = boxes
out["masks"] = masks
out["image_masks"] = image_masks
out["text_masks"] = text_masks
out["text_embeddings"] = text_embeddings
out["image_embeddings"] = image_embeddings
# -------------------- caption ------------------- #
if random.uniform(0, 1) < self.prob_use_caption:
if is_det:
out["caption"] = make_a_sentence(category_names)
else:
out["caption"] = raw_item["caption"]
else:
out["caption"] = ""
return out
def __len__(self):
return len(self.tsv_file)