jennysun's picture
Duplicate from gligen/demo
81ba850
raw
history blame
2.76 kB
import torch
import torch.nn as nn
from ldm.modules.attention import BasicTransformerBlock
from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
import torch.nn.functional as F
class PositionNet(nn.Module):
def __init__(self, positive_len, out_dim, fourier_freqs=8):
super().__init__()
self.positive_len = positive_len
self.out_dim = out_dim
self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
self.position_dim = fourier_freqs*2*4 # 2 is sin&cos, 4 is xyxy
# -------------------------------------------------------------- #
self.linears_text = nn.Sequential(
nn.Linear( self.positive_len + self.position_dim, 512),
nn.SiLU(),
nn.Linear( 512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
self.linears_image = nn.Sequential(
nn.Linear( self.positive_len + self.position_dim, 512),
nn.SiLU(),
nn.Linear( 512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
# -------------------------------------------------------------- #
self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))
def forward(self, boxes, masks, text_masks, image_masks, text_embeddings, image_embeddings):
B, N, _ = boxes.shape
masks = masks.unsqueeze(-1) # B*N*1
text_masks = text_masks.unsqueeze(-1) # B*N*1
image_masks = image_masks.unsqueeze(-1) # B*N*1
# embedding position (it may includes padding as placeholder)
xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
# learnable null embedding
text_null = self.null_text_feature.view(1,1,-1) # 1*1*C
image_null = self.null_image_feature.view(1,1,-1) # 1*1*C
xyxy_null = self.null_position_feature.view(1,1,-1) # 1*1*C
# replace padding with learnable null embedding
text_embeddings = text_embeddings*text_masks + (1-text_masks)*text_null
image_embeddings = image_embeddings*image_masks + (1-image_masks)*image_null
xyxy_embedding = xyxy_embedding*masks + (1-masks)*xyxy_null
objs_text = self.linears_text( torch.cat([text_embeddings, xyxy_embedding], dim=-1) )
objs_image = self.linears_image( torch.cat([image_embeddings,xyxy_embedding], dim=-1) )
objs = torch.cat( [objs_text,objs_image], dim=1 )
assert objs.shape == torch.Size([B,N*2,self.out_dim])
return objs