jennysun's picture
Passing in language and grounding instruction as outputs after button is pressed to make changes
116a165
raw
history blame
31.6 kB
import gradio as gr
import torch
from omegaconf import OmegaConf
from gligen.task_grounded_generation import grounded_generation_box, load_ckpt, load_common_ckpt
import json
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from functools import partial
from collections import Counter
import math
import gc
from gradio import processing_utils
from typing import Optional
import warnings
from datetime import datetime
from huggingface_hub import hf_hub_download
hf_hub_download = partial(hf_hub_download, library_name="gligen_demo")
import sys
import os
import openai
from gradio.components import Textbox, Text
sys.tracebacklimit = 0
def load_from_hf(repo_id, filename='diffusion_pytorch_model.bin', subfolder=None):
cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder)
return torch.load(cache_file, map_location='cpu')
def load_ckpt_config_from_hf(modality):
ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='model')
config = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='config')
return ckpt, config
def ckpt_load_helper(modality, is_inpaint, is_style, common_instances=None):
pretrained_ckpt_gligen, config = load_ckpt_config_from_hf(modality)
config = OmegaConf.create( config["_content"] ) # config used in training
config.alpha_scale = 1.0
config.model['params']['is_inpaint'] = is_inpaint
config.model['params']['is_style'] = is_style
if common_instances is None:
common_ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'common.pth', subfolder='model')
common_instances = load_common_ckpt(config, common_ckpt)
loaded_model_list = load_ckpt(config, pretrained_ckpt_gligen, common_instances)
return loaded_model_list, common_instances
class Instance:
def __init__(self, capacity = 2):
self.model_type = 'base'
self.loaded_model_list = {}
self.counter = Counter()
self.global_counter = Counter()
self.loaded_model_list['base'], self.common_instances = ckpt_load_helper(
'gligen-generation-text-box',
is_inpaint=False, is_style=False, common_instances=None
)
self.capacity = capacity
def _log(self, model_type, batch_size, instruction, phrase_list):
self.counter[model_type] += 1
self.global_counter[model_type] += 1
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print('[{}] Current: {}, All: {}. Samples: {}, prompt: {}, phrases: {}'.format(
current_time, dict(self.counter), dict(self.global_counter), batch_size, instruction, phrase_list
))
def get_model(self, model_type, batch_size, instruction, phrase_list):
if model_type in self.loaded_model_list:
self._log(model_type, batch_size, instruction, phrase_list)
return self.loaded_model_list[model_type]
if self.capacity == len(self.loaded_model_list):
least_used_type = self.counter.most_common()[-1][0]
del self.loaded_model_list[least_used_type]
del self.counter[least_used_type]
gc.collect()
torch.cuda.empty_cache()
self.loaded_model_list[model_type] = self._get_model(model_type)
self._log(model_type, batch_size, instruction, phrase_list)
return self.loaded_model_list[model_type]
def _get_model(self, model_type):
if model_type == 'base':
return ckpt_load_helper(
'gligen-generation-text-box',
is_inpaint=False, is_style=False, common_instances=self.common_instances
)[0]
elif model_type == 'inpaint':
return ckpt_load_helper(
'gligen-inpainting-text-box',
is_inpaint=True, is_style=False, common_instances=self.common_instances
)[0]
elif model_type == 'style':
return ckpt_load_helper(
'gligen-generation-text-image-box',
is_inpaint=False, is_style=True, common_instances=self.common_instances
)[0]
assert False
instance = Instance()
def load_clip_model():
from transformers import CLIPProcessor, CLIPModel
version = "openai/clip-vit-large-patch14"
model = CLIPModel.from_pretrained(version).cuda()
processor = CLIPProcessor.from_pretrained(version)
return {
'version': version,
'model': model,
'processor': processor,
}
clip_model = load_clip_model()
class ImageMask(gr.components.Image):
"""
Sets: source="canvas", tool="sketch"
"""
is_template = True
def __init__(self, **kwargs):
super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
def preprocess(self, x):
if x is None:
return x
if self.tool == "sketch" and self.source in ["upload", "webcam"] and type(x) != dict:
decode_image = processing_utils.decode_base64_to_image(x)
width, height = decode_image.size
mask = np.zeros((height, width, 4), dtype=np.uint8)
mask[..., -1] = 255
mask = self.postprocess(mask)
x = {'image': x, 'mask': mask}
return super().preprocess(x)
class Blocks(gr.Blocks):
def __init__(
self,
theme: str = "default",
analytics_enabled: Optional[bool] = None,
mode: str = "blocks",
title: str = "Gradio",
css: Optional[str] = None,
**kwargs,
):
self.extra_configs = {
'thumbnail': kwargs.pop('thumbnail', ''),
'url': kwargs.pop('url', 'https://gradio.app/'),
'creator': kwargs.pop('creator', 'Jenny Sun'),
}
super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs)
warnings.filterwarnings("ignore")
def get_config_file(self):
config = super(Blocks, self).get_config_file()
for k, v in self.extra_configs.items():
config[k] = v
return config
'''
inference model
'''
@torch.no_grad()
def inference(task, language_instruction, grounding_instruction, inpainting_boxes_nodrop, image,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed, actual_mask, style_image,
*args, **kwargs):
grounding_instruction = json.loads(grounding_instruction)
phrase_list, location_list = [], []
for k, v in grounding_instruction.items():
phrase_list.append(k)
location_list.append(v)
placeholder_image = Image.open('images/teddy.jpg').convert("RGB")
image_list = [placeholder_image] * len(phrase_list) # placeholder input for visual prompt, which is disabled
batch_size = int(batch_size)
if not 1 <= batch_size <= 4:
batch_size = 2
if style_image == None:
has_text_mask = 1
has_image_mask = 0 # then we hack above 'image_list'
else:
valid_phrase_len = len(phrase_list)
phrase_list += ['placeholder']
has_text_mask = [1]*valid_phrase_len + [0]
image_list = [placeholder_image]*valid_phrase_len + [style_image]
has_image_mask = [0]*valid_phrase_len + [1]
location_list += [ [0.0, 0.0, 1, 0.01] ] # style image grounding location
if task == 'Grounded Inpainting':
alpha_sample = 1.0
instruction = dict(
prompt = language_instruction,
phrases = phrase_list,
images = image_list,
locations = location_list,
alpha_type = [alpha_sample, 0, 1.0 - alpha_sample],
has_text_mask = has_text_mask,
has_image_mask = has_image_mask,
save_folder_name = language_instruction,
guidance_scale = guidance_scale,
batch_size = batch_size,
fix_seed = bool(fix_seed),
rand_seed = int(rand_seed),
actual_mask = actual_mask,
inpainting_boxes_nodrop = inpainting_boxes_nodrop,
)
get_model = partial(instance.get_model,
batch_size=batch_size,
instruction=language_instruction,
phrase_list=phrase_list)
with torch.autocast(device_type='cuda', dtype=torch.float16):
if task == 'Grounded Generation':
if style_image == None:
return grounded_generation_box(get_model('base'), instruction, *args, **kwargs)
else:
return grounded_generation_box(get_model('style'), instruction, *args, **kwargs)
elif task == 'Grounded Inpainting':
assert image is not None
instruction['input_image'] = image.convert("RGB")
return grounded_generation_box(get_model('inpaint'), instruction, *args, **kwargs)
def draw_box(boxes=[], texts=[], img=None):
if len(boxes) == 0 and img is None:
return None
if img is None:
img = Image.new('RGB', (512, 512), (255, 255, 255))
colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
draw = ImageDraw.Draw(img)
font = ImageFont.truetype("DejaVuSansMono.ttf", size=18)
for bid, box in enumerate(boxes):
draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4)
anno_text = texts[bid]
draw.rectangle([box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]], outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4)
draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size*1.2)], anno_text, font=font, fill=(255,255,255))
return img
def get_concat(ims):
if len(ims) == 1:
n_col = 1
else:
n_col = 2
n_row = math.ceil(len(ims) / 2)
dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white")
for i, im in enumerate(ims):
row_id = i // n_col
col_id = i % n_col
dst.paste(im, (im.width * col_id, im.height * row_id))
return dst
def auto_append_grounding(language_instruction, grounding_texts):
for grounding_text in grounding_texts:
if grounding_text not in language_instruction and grounding_text != 'auto':
language_instruction += "; " + grounding_text
print(language_instruction)
return language_instruction
def generate(task, language_instruction, grounding_texts, sketch_pad,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed, use_actual_mask, append_grounding, style_cond_image,
state):
if 'boxes' not in state:
state['boxes'] = []
boxes = state['boxes']
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
assert len(boxes) == len(grounding_texts)
if len(boxes) != len(grounding_texts):
if len(boxes) < len(grounding_texts):
raise ValueError("""The number of boxes should be equal to the number of grounding objects.
Number of boxes drawn: {}, number of grounding tokens: {}.
Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts)))
grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts))
boxes = (np.asarray(boxes) / 512).tolist()
grounding_instruction = json.dumps({obj: box for obj,box in zip(grounding_texts, boxes)})
image = None
actual_mask = None
if task == 'Grounded Inpainting':
image = state.get('original_image', sketch_pad['image']).copy()
image = center_crop(image)
image = Image.fromarray(image)
if use_actual_mask:
actual_mask = sketch_pad['mask'].copy()
if actual_mask.ndim == 3:
actual_mask = actual_mask[..., 0]
actual_mask = center_crop(actual_mask, tgt_size=(64, 64))
actual_mask = torch.from_numpy(actual_mask == 0).float()
if state.get('inpaint_hw', None):
boxes = np.asarray(boxes) * 0.9 + 0.05
boxes = boxes.tolist()
grounding_instruction = json.dumps({obj: box for obj,box in zip(grounding_texts, boxes) if obj != 'auto'})
if append_grounding:
language_instruction = auto_append_grounding(language_instruction, grounding_texts)
gen_images, gen_overlays = inference(
task, language_instruction, grounding_instruction, boxes, image,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed, actual_mask, style_cond_image, clip_model=clip_model,
)
for idx, gen_image in enumerate(gen_images):
if task == 'Grounded Inpainting' and state.get('inpaint_hw', None):
hw = min(*state['original_image'].shape[:2])
gen_image = sized_center_fill(state['original_image'].copy(), np.array(gen_image.resize((hw, hw))), hw, hw)
gen_image = Image.fromarray(gen_image)
gen_images[idx] = gen_image
blank_samples = batch_size % 2 if batch_size > 1 else 0
gen_images = [gr.Image.update(value=x, visible=True) for i,x in enumerate(gen_images)] \
+ [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
+ [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
return gen_images + [state]
def binarize(x):
return (x != 0).astype('uint8') * 255
def sized_center_crop(img, cropx, cropy):
y, x = img.shape[:2]
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
return img[starty:starty+cropy, startx:startx+cropx]
def sized_center_fill(img, fill, cropx, cropy):
y, x = img.shape[:2]
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
img[starty:starty+cropy, startx:startx+cropx] = fill
return img
def sized_center_mask(img, cropx, cropy):
y, x = img.shape[:2]
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
center_region = img[starty:starty+cropy, startx:startx+cropx].copy()
img = (img * 0.2).astype('uint8')
img[starty:starty+cropy, startx:startx+cropx] = center_region
return img
def center_crop(img, HW=None, tgt_size=(512, 512)):
if HW is None:
H, W = img.shape[:2]
HW = min(H, W)
img = sized_center_crop(img, HW, HW)
img = Image.fromarray(img)
img = img.resize(tgt_size)
return np.array(img)
def draw(task, input, grounding_texts, new_image_trigger, state):
if type(input) == dict:
image = input['image']
mask = input['mask']
else:
mask = input
if mask.ndim == 3:
mask = mask[..., 0]
image_scale = 1.0
# resize trigger
if task == "Grounded Inpainting":
mask_cond = mask.sum() == 0
# size_cond = mask.shape != (512, 512)
if mask_cond and 'original_image' not in state:
image = Image.fromarray(image)
width, height = image.size
scale = 600 / min(width, height)
image = image.resize((int(width * scale), int(height * scale)))
state['original_image'] = np.array(image).copy()
image_scale = float(height / width)
return [None, new_image_trigger + 1, image_scale, state]
else:
original_image = state['original_image']
H, W = original_image.shape[:2]
image_scale = float(H / W)
mask = binarize(mask)
if mask.shape != (512, 512):
# assert False, "should not receive any non- 512x512 masks."
if 'original_image' in state and state['original_image'].shape[:2] == mask.shape:
mask = center_crop(mask, state['inpaint_hw'])
image = center_crop(state['original_image'], state['inpaint_hw'])
else:
mask = np.zeros((512, 512), dtype=np.uint8)
# mask = center_crop(mask)
mask = binarize(mask)
if type(mask) != np.ndarray:
mask = np.array(mask)
if mask.sum() == 0 and task != "Grounded Inpainting":
state = {}
if task != 'Grounded Inpainting':
image = None
else:
image = Image.fromarray(image)
if 'boxes' not in state:
state['boxes'] = []
if 'masks' not in state or len(state['masks']) == 0:
state['masks'] = []
last_mask = np.zeros_like(mask)
else:
last_mask = state['masks'][-1]
if type(mask) == np.ndarray and mask.size > 1:
diff_mask = mask - last_mask
else:
diff_mask = np.zeros([])
if diff_mask.sum() > 0:
x1x2 = np.where(diff_mask.max(0) != 0)[0]
y1y2 = np.where(diff_mask.max(1) != 0)[0]
y1, y2 = y1y2.min(), y1y2.max()
x1, x2 = x1x2.min(), x1x2.max()
if (x2 - x1 > 5) and (y2 - y1 > 5):
state['masks'].append(mask.copy())
state['boxes'].append((x1, y1, x2, y2))
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
grounding_texts = [x for x in grounding_texts if len(x) > 0]
if len(grounding_texts) < len(state['boxes']):
grounding_texts += [f'Obj. {bid+1}' for bid in range(len(grounding_texts), len(state['boxes']))]
box_image = draw_box(state['boxes'], grounding_texts, image)
if box_image is not None and state.get('inpaint_hw', None):
inpaint_hw = state['inpaint_hw']
box_image_resize = np.array(box_image.resize((inpaint_hw, inpaint_hw)))
original_image = state['original_image'].copy()
box_image = sized_center_fill(original_image, box_image_resize, inpaint_hw, inpaint_hw)
return [box_image, new_image_trigger, image_scale, state]
def clear(task, sketch_pad_trigger, batch_size, state, switch_task=False):
if task != 'Grounded Inpainting':
sketch_pad_trigger = sketch_pad_trigger + 1
blank_samples = batch_size % 2 if batch_size > 1 else 0
out_images = [gr.Image.update(value=None, visible=True) for i in range(batch_size)] \
+ [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
+ [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
state = {}
return [None, sketch_pad_trigger, None, 1.0] + out_images + [state]
css = """
#img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img
{
height: var(--height) !important;
max-height: var(--height) !important;
min-height: var(--height) !important;
}
#paper-info a {
color:#008AD7;
text-decoration: none;
}
#paper-info a:hover {
cursor: pointer;
text-decoration: none;
}
"""
rescale_js = """
function(x) {
const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0;
const image_width = root.querySelector('#img2img_image').clientWidth;
const target_height = parseInt(image_width * image_scale);
document.body.style.setProperty('--height', `${target_height}px`);
root.querySelectorAll('button.justify-center.rounded')[0].style.display='none';
root.querySelectorAll('button.justify-center.rounded')[1].style.display='none';
return x;
}
"""
# Set up OpenAI API key
openai.api_key = os.environ['OPENAI_API_KEY']
prompt_base = 'Separate the subjects in this sentence by semicolons. For example, the sentence "a tiger and a horse running" should output "tiger; horse". If there are numbers, make each subject unique. For example, "2 dogs and 1 duck" would be "dog; dog; duck." Do the same for the following sentence: \n'
original_input = ""
separated_subjects = ""
# language_instruction = gr.Textbox(
# label="Language Instruction by User",
# value="2 horses running",
# visible=False
# )
# grounding_instruction = gr.Textbox(
# label="Subjects in image (Separated by semicolon)",
# value="horse; horse",
# visible=False
# )
def separate_subjects(input_text):
prompt = prompt_base + input_text
response = openai.Completion.create(
engine="text-davinci-002",
prompt=prompt,
max_tokens=1024,
n=1,
stop=None,
temperature=0.7,
)
output_text = response.choices[0].text.strip()
language_instruction = gr.Textbox(
label="Language Instruction by User",
value=input_text,
visible=False
)
grounding_instruction = gr.Textbox(
label="Subjects in image (Separated by semicolon)",
value=output_text,
visible=False
)
return output_text, language_instruction, grounding_instruction
with Blocks(
css=css,
analytics_enabled=False,
title="GLIGen demo",
) as main:
gr.Markdown('<h1 style="text-align: center;">MSR: MultiSubject Render</h1>')
gr.Markdown('<h3 style="text-align: center;">Using NLP and Grounding Processing Techniques to improve image generation of multiple subjects with base Stable Diffusion Model</h3>')
with gr.Row():
with gr.Column(scale=4):
sketch_pad_trigger = gr.Number(value=0, visible=False)
sketch_pad_resize_trigger = gr.Number(value=0, visible=False)
init_white_trigger = gr.Number(value=0, visible=False)
image_scale = gr.Number(value=0, elem_id="image_scale", visible=False)
new_image_trigger = gr.Number(value=0, visible=False)
# UNCOMMENT THIS WHEN YOU WANT TO TOGGLE INPAINTING OPTION
task = gr.Radio(
choices=["Grounded Generation", 'Grounded Inpainting'],
type="value",
value="Grounded Generation",
label="Task",
)
# language_instruction = gr.Textbox(
# label="Enter your prompt here",
# )
# grounding_instruction = gr.Textbox(
# label="Grounding instruction (Separated by semicolon)",
# )
# grounding_instruction = separate_subjects(language_instruction.value)
# print(f"The user entered: {language_instruction}")
# print(f"Our function gave: {grounding_instruction}")
# EXPERIMENTING:
with gr.Column():
seed = gr.Text(label="Enter your prompt here:")
gr.Examples(["2 horses running", "A cowboy and ninja fighting", "An apple and an orange on a table"], inputs=[seed])
with gr.Column():
btn = gr.Button("Gen")
with gr.Column():
separated_text = gr.Text(label="Subjects Separated by Semicolon")
language_instruction = gr.Textbox(
label="Language Instruction by User",
value=seed,
visible=False
)
grounding_instruction = gr.Textbox(
label="Subjects in image (Separated by semicolon)",
value=separated_text,
visible=False
)
btn.click(separate_subjects, inputs=[seed], outputs=[separated_text, language_instruction, grounding_instruction])
# language_instruction.value = seed
# grounding_instruction.value = separated_text
####################
# language_instruction = gr.Textbox(
# label="Enter your prompt here",
# )
# original_input = language_instruction.value
# start_btn = gr.Button('Start')
# start_btn.click(update_grounding_instruction)
# print("separated subjects 2:", separated_subjects)
# language_instruction = gr.Textbox(
# label="just needs to be here",
# value=seed,
# visible=False
# )
# grounding_instruction = gr.Textbox(
# label="Subjects in image (Separated by semicolon)",
# value=separated_text,
# visible=False
# )
print("Language instruction:", language_instruction.value)
print("Grounding instruction:", grounding_instruction.value)
####################
with gr.Row():
sketch_pad = ImageMask(label="Sketch Pad", elem_id="img2img_image")
out_imagebox = gr.Image(type="pil", label="Parsed Sketch Pad")
with gr.Row():
clear_btn = gr.Button(value='Clear')
gen_btn = gr.Button(value='Generate')
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
alpha_sample = gr.Slider(minimum=0, maximum=1.0, step=0.1, value=0.3, label="Scheduled Sampling (Ο„)", visible=False)
guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=20, label="Guidance Scale (how closely it adheres to your prompt)")
batch_size = gr.Slider(minimum=1, maximum=4, step=1, value=4, label="Number of Images")
append_grounding = gr.Checkbox(value=True, label="Append grounding instructions to the caption", visible=False)
use_actual_mask = gr.Checkbox(value=False, label="Use actual mask for inpainting", visible=False)
with gr.Row():
fix_seed = gr.Checkbox(value=False, label="Fixed seed", visible=False)
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label="Seed", visible=False)
with gr.Row():
use_style_cond = gr.Checkbox(value=False, label="Enable Style Condition", visible=False)
style_cond_image = gr.Image(type="pil", label="Style Condition", interactive=True, visible=False)
with gr.Column(scale=4):
gr.HTML('<span style="font-size: 20px; font-weight: bold">Generated Images</span>')
with gr.Row():
out_gen_1 = gr.Image(type="pil", visible=True, show_label=False)
out_gen_2 = gr.Image(type="pil", visible=True, show_label=False)
with gr.Row():
out_gen_3 = gr.Image(type="pil", visible=True, show_label=False)
out_gen_4 = gr.Image(type="pil", visible=True, show_label=False)
state = gr.State({})
class Controller:
def __init__(self):
self.calls = 0
self.tracks = 0
self.resizes = 0
self.scales = 0
def init_white(self, init_white_trigger):
self.calls += 1
return np.ones((512, 512), dtype='uint8') * 255, 1.0, init_white_trigger+1
def change_n_samples(self, n_samples):
blank_samples = n_samples % 2 if n_samples > 1 else 0
return [gr.Image.update(visible=True) for _ in range(n_samples + blank_samples)] \
+ [gr.Image.update(visible=False) for _ in range(4 - n_samples - blank_samples)]
def resize_centercrop(self, state):
self.resizes += 1
image = state['original_image'].copy()
inpaint_hw = int(0.9 * min(*image.shape[:2]))
state['inpaint_hw'] = inpaint_hw
image_cc = center_crop(image, inpaint_hw)
# print(f'resize triggered {self.resizes}', image.shape, '->', image_cc.shape)
return image_cc, state
def resize_masked(self, state):
self.resizes += 1
image = state['original_image'].copy()
inpaint_hw = int(0.9 * min(*image.shape[:2]))
state['inpaint_hw'] = inpaint_hw
image_mask = sized_center_mask(image, inpaint_hw, inpaint_hw)
state['masked_image'] = image_mask.copy()
# print(f'mask triggered {self.resizes}')
return image_mask, state
def switch_task_hide_cond(self, task):
cond = False
if task == "Grounded Generation":
cond = True
return gr.Checkbox.update(visible=cond, value=False), gr.Image.update(value=None, visible=False), gr.Slider.update(visible=cond), gr.Checkbox.update(visible=(not cond), value=False)
controller = Controller()
main.load(
lambda x:x+1,
inputs=sketch_pad_trigger,
outputs=sketch_pad_trigger,
queue=False)
sketch_pad.edit(
draw,
inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
queue=False,
)
grounding_instruction.change(
draw,
inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
queue=False,
)
clear_btn.click(
clear,
inputs=[task, sketch_pad_trigger, batch_size, state],
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
queue=False)
task.change(
partial(clear, switch_task=True),
inputs=[task, sketch_pad_trigger, batch_size, state],
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
queue=False)
sketch_pad_trigger.change(
controller.init_white,
inputs=[init_white_trigger],
outputs=[sketch_pad, image_scale, init_white_trigger],
queue=False)
sketch_pad_resize_trigger.change(
controller.resize_masked,
inputs=[state],
outputs=[sketch_pad, state],
queue=False)
batch_size.change(
controller.change_n_samples,
inputs=[batch_size],
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4],
queue=False)
gen_btn.click(
generate,
inputs=[
task, language_instruction, grounding_instruction, sketch_pad,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed,
use_actual_mask,
append_grounding, style_cond_image,
state,
],
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
queue=True
)
sketch_pad_resize_trigger.change(
None,
None,
sketch_pad_resize_trigger,
_js=rescale_js,
queue=False)
init_white_trigger.change(
None,
None,
init_white_trigger,
_js=rescale_js,
queue=False)
use_style_cond.change(
lambda cond: gr.Image.update(visible=cond),
use_style_cond,
style_cond_image,
queue=False)
task.change(
controller.switch_task_hide_cond,
inputs=task,
outputs=[use_style_cond, style_cond_image, alpha_sample, use_actual_mask],
queue=False)
main.queue(concurrency_count=1, api_open=False)
main.launch(share=False, show_api=False, show_error=True)