Jeff Parks
added model
9fdc9ee
raw
history blame
836 Bytes
import gradio as gr
import gr.themes.*
# import model for gradio
learn_gradio = load_learner('image_classifier_flowers.pkl')
# build prediction function
labels = learn_gradio.dls.vocab
def predict(img):
img = PILImage.create(img)
pred,pred_idx,probs = learn_gradio.predict(img)
return {str(labels[i]): float(probs[i]) for i in range(len(labels))}
# build gradio interface
gradio_interface = gr.Interface(
theme=gr.themes.Soft(),
title = "Flower Image Classifier",
description = "A simple classifier for the 102-category <a href='https://www.robots.ox.ac.uk/~vgg/data/flowers/' target='new'>Flower Dataset</a>",
fn=predict,
inputs = gr.inputs.Image(shape=(224,224)),
outputs = gr.outputs.Label(num_top_classes=5),
enable_queue=True,
)
# launch interface
gradio_interface.launch(share=True)