Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import requests
|
2 |
import streamlit as st
|
3 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
|
|
7 |
API_KEY = os.getenv('API_KEY')
|
8 |
-
|
9 |
headers = {
|
10 |
"Authorization": f"Bearer {API_KEY}",
|
11 |
"Content-Type": "application/json"
|
12 |
}
|
13 |
-
|
14 |
-
# Prompt Set of Examples:
|
15 |
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
17 |
def StreamLLMChatResponse(prompt):
|
18 |
endpoint_url = API_URL
|
19 |
hf_token = API_KEY
|
@@ -39,7 +71,6 @@ def StreamLLMChatResponse(prompt):
|
|
39 |
collected_chunks.append(r.token.text)
|
40 |
chunk_message = r.token.text
|
41 |
collected_messages.append(chunk_message)
|
42 |
-
|
43 |
try:
|
44 |
report.append(r.token.text)
|
45 |
if len(r.token.text) > 0:
|
@@ -56,52 +87,6 @@ def query(payload):
|
|
56 |
def get_output(prompt):
|
57 |
return query({"inputs": prompt})
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
import streamlit as st
|
64 |
-
import openai
|
65 |
-
import os
|
66 |
-
import base64
|
67 |
-
import glob
|
68 |
-
import json
|
69 |
-
import mistune
|
70 |
-
import pytz
|
71 |
-
import math
|
72 |
-
import requests
|
73 |
-
import time
|
74 |
-
import re
|
75 |
-
import textract
|
76 |
-
import zipfile # New import for zipping files
|
77 |
-
|
78 |
-
|
79 |
-
from datetime import datetime
|
80 |
-
from openai import ChatCompletion
|
81 |
-
from xml.etree import ElementTree as ET
|
82 |
-
from bs4 import BeautifulSoup
|
83 |
-
from collections import deque
|
84 |
-
from audio_recorder_streamlit import audio_recorder
|
85 |
-
from dotenv import load_dotenv
|
86 |
-
from PyPDF2 import PdfReader
|
87 |
-
from langchain.text_splitter import CharacterTextSplitter
|
88 |
-
from langchain.embeddings import OpenAIEmbeddings
|
89 |
-
from langchain.vectorstores import FAISS
|
90 |
-
from langchain.chat_models import ChatOpenAI
|
91 |
-
from langchain.memory import ConversationBufferMemory
|
92 |
-
from langchain.chains import ConversationalRetrievalChain
|
93 |
-
from templates import css, bot_template, user_template
|
94 |
-
|
95 |
-
# page config and sidebar declares up front allow all other functions to see global class variables
|
96 |
-
st.set_page_config(page_title="GPT Streamlit Document Reasoner", layout="wide")
|
97 |
-
should_save = st.sidebar.checkbox("💾 Save", value=True)
|
98 |
-
|
99 |
-
def generate_filename_old(prompt, file_type):
|
100 |
-
central = pytz.timezone('US/Central')
|
101 |
-
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") # Date and time DD-HHMM
|
102 |
-
safe_prompt = "".join(x for x in prompt if x.isalnum())[:90] # Limit file name size and trim whitespace
|
103 |
-
return f"{safe_date_time}_{safe_prompt}.{file_type}" # Return a safe file name
|
104 |
-
|
105 |
def generate_filename(prompt, file_type):
|
106 |
central = pytz.timezone('US/Central')
|
107 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
@@ -121,10 +106,7 @@ def transcribe_audio(openai_key, file_path, model):
|
|
121 |
st.write(response.json())
|
122 |
chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
|
123 |
transcript = response.json().get('text')
|
124 |
-
#st.write('Responses:')
|
125 |
-
#st.write(chatResponse)
|
126 |
filename = generate_filename(transcript, 'txt')
|
127 |
-
#create_file(filename, transcript, chatResponse)
|
128 |
response = chatResponse
|
129 |
user_prompt = transcript
|
130 |
create_file(filename, user_prompt, response, should_save)
|
@@ -147,47 +129,21 @@ def save_and_play_audio(audio_recorder):
|
|
147 |
def create_file(filename, prompt, response, should_save=True):
|
148 |
if not should_save:
|
149 |
return
|
150 |
-
|
151 |
-
# Step 2: Extract base filename without extension
|
152 |
base_filename, ext = os.path.splitext(filename)
|
153 |
-
|
154 |
-
# Step 3: Check if the response contains Python code
|
155 |
has_python_code = bool(re.search(r"```python([\s\S]*?)```", response))
|
156 |
-
|
157 |
-
# Step 4: Write files based on type
|
158 |
if ext in ['.txt', '.htm', '.md']:
|
159 |
-
# Create Prompt file
|
160 |
with open(f"{base_filename}-Prompt.txt", 'w') as file:
|
161 |
file.write(prompt)
|
162 |
-
|
163 |
-
# Create Response file
|
164 |
with open(f"{base_filename}-Response.md", 'w') as file:
|
165 |
file.write(response)
|
166 |
-
|
167 |
-
# Create Code file if Python code is present
|
168 |
if has_python_code:
|
169 |
-
# Extract Python code from the response
|
170 |
python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
|
171 |
-
|
172 |
with open(f"{base_filename}-Code.py", 'w') as file:
|
173 |
file.write(python_code)
|
174 |
-
|
175 |
-
|
176 |
-
def create_file_old(filename, prompt, response, should_save=True):
|
177 |
-
if not should_save:
|
178 |
-
return
|
179 |
-
if filename.endswith(".txt"):
|
180 |
-
with open(filename, 'w') as file:
|
181 |
-
file.write(f"{prompt}\n{response}")
|
182 |
-
elif filename.endswith(".htm"):
|
183 |
-
with open(filename, 'w') as file:
|
184 |
-
file.write(f"{prompt} {response}")
|
185 |
-
elif filename.endswith(".md"):
|
186 |
-
with open(filename, 'w') as file:
|
187 |
-
file.write(f"{prompt}\n\n{response}")
|
188 |
|
189 |
def truncate_document(document, length):
|
190 |
return document[:length]
|
|
|
191 |
def divide_document(document, max_length):
|
192 |
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
|
193 |
|
@@ -252,35 +208,23 @@ def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
|
|
252 |
conversation.append({'role': 'user', 'content': prompt})
|
253 |
if len(document_section)>0:
|
254 |
conversation.append({'role': 'assistant', 'content': document_section})
|
255 |
-
|
256 |
start_time = time.time()
|
257 |
report = []
|
258 |
res_box = st.empty()
|
259 |
collected_chunks = []
|
260 |
collected_messages = []
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
temperature=0.5,
|
266 |
-
stream=True
|
267 |
-
):
|
268 |
-
|
269 |
-
collected_chunks.append(chunk) # save the event response
|
270 |
-
chunk_message = chunk['choices'][0]['delta'] # extract the message
|
271 |
-
collected_messages.append(chunk_message) # save the message
|
272 |
-
|
273 |
content=chunk["choices"][0].get("delta",{}).get("content")
|
274 |
-
|
275 |
try:
|
276 |
report.append(content)
|
277 |
if len(content) > 0:
|
278 |
result = "".join(report).strip()
|
279 |
-
#result = result.replace("\n", "")
|
280 |
res_box.markdown(f'*{result}*')
|
281 |
except:
|
282 |
st.write(' ')
|
283 |
-
|
284 |
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
|
285 |
st.write("Elapsed time:")
|
286 |
st.write(time.time() - start_time)
|
@@ -295,7 +239,6 @@ def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
|
|
295 |
return response['choices'][0]['message']['content']
|
296 |
|
297 |
def extract_mime_type(file):
|
298 |
-
# Check if the input is a string
|
299 |
if isinstance(file, str):
|
300 |
pattern = r"type='(.*?)'"
|
301 |
match = re.search(pattern, file)
|
@@ -303,15 +246,11 @@ def extract_mime_type(file):
|
|
303 |
return match.group(1)
|
304 |
else:
|
305 |
raise ValueError(f"Unable to extract MIME type from {file}")
|
306 |
-
# If it's not a string, assume it's a streamlit.UploadedFile object
|
307 |
elif isinstance(file, streamlit.UploadedFile):
|
308 |
return file.type
|
309 |
else:
|
310 |
raise TypeError("Input should be a string or a streamlit.UploadedFile object")
|
311 |
|
312 |
-
from io import BytesIO
|
313 |
-
import re
|
314 |
-
|
315 |
def extract_file_extension(file):
|
316 |
# get the file name directly from the UploadedFile object
|
317 |
file_name = file.name
|
@@ -326,10 +265,7 @@ def pdf2txt(docs):
|
|
326 |
text = ""
|
327 |
for file in docs:
|
328 |
file_extension = extract_file_extension(file)
|
329 |
-
# print the file extension
|
330 |
st.write(f"File type extension: {file_extension}")
|
331 |
-
|
332 |
-
# read the file according to its extension
|
333 |
try:
|
334 |
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
|
335 |
text += file.getvalue().decode('utf-8')
|
@@ -340,20 +276,6 @@ def pdf2txt(docs):
|
|
340 |
text += pdf.pages[page].extract_text() # new PyPDF2 syntax
|
341 |
except Exception as e:
|
342 |
st.write(f"Error processing file {file.name}: {e}")
|
343 |
-
|
344 |
-
return text
|
345 |
-
|
346 |
-
def pdf2txt_old(pdf_docs):
|
347 |
-
st.write(pdf_docs)
|
348 |
-
for file in pdf_docs:
|
349 |
-
mime_type = extract_mime_type(file)
|
350 |
-
st.write(f"MIME type of file: {mime_type}")
|
351 |
-
|
352 |
-
text = ""
|
353 |
-
for pdf in pdf_docs:
|
354 |
-
pdf_reader = PdfReader(pdf)
|
355 |
-
for page in pdf_reader.pages:
|
356 |
-
text += page.extract_text()
|
357 |
return text
|
358 |
|
359 |
def txt2chunks(text):
|
@@ -376,13 +298,10 @@ def process_user_input(user_question):
|
|
376 |
for i, message in enumerate(st.session_state.chat_history):
|
377 |
template = user_template if i % 2 == 0 else bot_template
|
378 |
st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
379 |
-
# Save file output from PDF query results
|
380 |
filename = generate_filename(user_question, 'txt')
|
381 |
-
#create_file(filename, user_question, message.content)
|
382 |
response = message.content
|
383 |
user_prompt = user_question
|
384 |
create_file(filename, user_prompt, response, should_save)
|
385 |
-
#st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
386 |
|
387 |
def divide_prompt(prompt, max_length):
|
388 |
words = prompt.split()
|
@@ -391,78 +310,53 @@ def divide_prompt(prompt, max_length):
|
|
391 |
current_length = 0
|
392 |
for word in words:
|
393 |
if len(word) + current_length <= max_length:
|
394 |
-
current_length += len(word) + 1
|
395 |
current_chunk.append(word)
|
396 |
else:
|
397 |
chunks.append(' '.join(current_chunk))
|
398 |
current_chunk = [word]
|
399 |
current_length = len(word)
|
400 |
-
chunks.append(' '.join(current_chunk))
|
401 |
return chunks
|
402 |
|
403 |
def create_zip_of_files(files):
|
404 |
-
"""
|
405 |
-
Create a zip file from a list of files.
|
406 |
-
"""
|
407 |
zip_name = "all_files.zip"
|
408 |
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
409 |
for file in files:
|
410 |
zipf.write(file)
|
411 |
return zip_name
|
412 |
|
413 |
-
|
414 |
def get_zip_download_link(zip_file):
|
415 |
-
"""
|
416 |
-
Generate a link to download the zip file.
|
417 |
-
"""
|
418 |
with open(zip_file, 'rb') as f:
|
419 |
data = f.read()
|
420 |
b64 = base64.b64encode(data).decode()
|
421 |
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
|
422 |
return href
|
423 |
|
424 |
-
|
425 |
-
|
426 |
def main():
|
427 |
st.title("Medical Llama Test Bench with Inference Endpoints Llama 7B")
|
428 |
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
|
429 |
example_input = st.text_input("Enter your example text:", value=prompt)
|
430 |
-
|
431 |
if st.button("Run Prompt With Dr Llama"):
|
432 |
try:
|
433 |
StreamLLMChatResponse(example_input)
|
434 |
except:
|
435 |
st.write('Dr. Llama is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
|
436 |
-
|
437 |
-
# clip ---
|
438 |
-
|
439 |
openai.api_key = os.getenv('OPENAI_KEY')
|
440 |
-
|
441 |
-
# File type for output, model choice
|
442 |
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
|
443 |
choice = st.sidebar.selectbox("Output File Type:", menu)
|
444 |
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
|
445 |
-
|
446 |
-
# Audio, transcribe, GPT:
|
447 |
filename = save_and_play_audio(audio_recorder)
|
448 |
if filename is not None:
|
449 |
transcription = transcribe_audio(openai.api_key, filename, "whisper-1")
|
450 |
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
451 |
filename = None
|
452 |
-
|
453 |
-
# prompt interfaces
|
454 |
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
|
455 |
-
|
456 |
-
# file section interface for prompts against large documents as context
|
457 |
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
|
458 |
with collength:
|
459 |
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
|
460 |
with colupload:
|
461 |
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
|
462 |
-
|
463 |
-
|
464 |
-
# Document section chat
|
465 |
-
|
466 |
document_sections = deque()
|
467 |
document_responses = {}
|
468 |
if uploaded_file is not None:
|
@@ -480,54 +374,36 @@ def main():
|
|
480 |
else:
|
481 |
if st.button(f"Chat about Section {i+1}"):
|
482 |
st.write('Reasoning with your inputs...')
|
483 |
-
response = chat_with_model(user_prompt, section, model_choice)
|
484 |
st.write('Response:')
|
485 |
st.write(response)
|
486 |
document_responses[i] = response
|
487 |
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
|
488 |
create_file(filename, user_prompt, response, should_save)
|
489 |
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
490 |
-
|
491 |
if st.button('💬 Chat'):
|
492 |
st.write('Reasoning with your inputs...')
|
493 |
-
|
494 |
-
#response = chat_with_model(user_prompt, ''.join(list(document_sections,)), model_choice) # *************************************
|
495 |
-
|
496 |
-
# Divide the user_prompt into smaller sections
|
497 |
user_prompt_sections = divide_prompt(user_prompt, max_length)
|
498 |
full_response = ''
|
499 |
for prompt_section in user_prompt_sections:
|
500 |
-
# Process each section with the model
|
501 |
response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
|
502 |
full_response += response + '\n' # Combine the responses
|
503 |
-
|
504 |
-
#st.write('Response:')
|
505 |
-
#st.write(full_response)
|
506 |
-
|
507 |
response = full_response
|
508 |
st.write('Response:')
|
509 |
st.write(response)
|
510 |
-
|
511 |
filename = generate_filename(user_prompt, choice)
|
512 |
create_file(filename, user_prompt, response, should_save)
|
513 |
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
514 |
-
|
515 |
all_files = glob.glob("*.*")
|
516 |
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names
|
517 |
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
|
518 |
-
|
519 |
-
# Added "Delete All" button
|
520 |
if st.sidebar.button("🗑 Delete All"):
|
521 |
for file in all_files:
|
522 |
os.remove(file)
|
523 |
st.experimental_rerun()
|
524 |
-
|
525 |
-
# Added "Download All" button
|
526 |
if st.sidebar.button("⬇️ Download All"):
|
527 |
zip_file = create_zip_of_files(all_files)
|
528 |
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
|
529 |
-
|
530 |
-
# Sidebar of Files Saving History and surfacing files as context of prompts and responses
|
531 |
file_contents=''
|
532 |
next_action=''
|
533 |
for file in all_files:
|
@@ -553,7 +429,6 @@ def main():
|
|
553 |
if st.button("🗑", key="delete_"+file):
|
554 |
os.remove(file)
|
555 |
st.experimental_rerun()
|
556 |
-
|
557 |
if len(file_contents) > 0:
|
558 |
if next_action=='open':
|
559 |
file_content_area = st.text_area("File Contents:", file_contents, height=500)
|
@@ -565,19 +440,14 @@ def main():
|
|
565 |
response = chat_with_model(user_prompt, file_contents, model_choice)
|
566 |
filename = generate_filename(file_contents, choice)
|
567 |
create_file(filename, user_prompt, response, should_save)
|
568 |
-
|
569 |
st.experimental_rerun()
|
570 |
-
#st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
571 |
-
|
572 |
|
573 |
load_dotenv()
|
574 |
st.write(css, unsafe_allow_html=True)
|
575 |
-
|
576 |
st.header("Chat with documents :books:")
|
577 |
user_question = st.text_input("Ask a question about your documents:")
|
578 |
if user_question:
|
579 |
process_user_input(user_question)
|
580 |
-
|
581 |
with st.sidebar:
|
582 |
st.subheader("Your documents")
|
583 |
docs = st.file_uploader("import documents", accept_multiple_files=True)
|
@@ -591,11 +461,6 @@ with st.sidebar:
|
|
591 |
st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
|
592 |
filename = generate_filename(raw, 'txt')
|
593 |
create_file(filename, raw, '', should_save)
|
594 |
-
#create_file(filename, raw, '')
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
|
600 |
if __name__ == "__main__":
|
601 |
main()
|
|
|
1 |
+
# Imports
|
2 |
+
import base64
|
3 |
+
import glob
|
4 |
+
import json
|
5 |
+
import math
|
6 |
+
import mistune
|
7 |
+
import openai
|
8 |
+
import os
|
9 |
+
import pytz
|
10 |
+
import re
|
11 |
import requests
|
12 |
import streamlit as st
|
13 |
+
import textract
|
14 |
+
import time
|
15 |
+
import zipfile
|
16 |
+
from audio_recorder_streamlit import audio_recorder
|
17 |
+
from bs4 import BeautifulSoup
|
18 |
+
from collections import deque
|
19 |
+
from datetime import datetime
|
20 |
+
from dotenv import load_dotenv
|
21 |
from huggingface_hub import InferenceClient
|
22 |
+
from io import BytesIO
|
23 |
+
from langchain.chat_models import ChatOpenAI
|
24 |
+
from langchain.chains import ConversationalRetrievalChain
|
25 |
+
from langchain.embeddings import OpenAIEmbeddings
|
26 |
+
from langchain.memory import ConversationBufferMemory
|
27 |
+
from langchain.text_splitter import CharacterTextSplitter
|
28 |
+
from langchain.vectorstores import FAISS
|
29 |
+
from openai import ChatCompletion
|
30 |
+
from PyPDF2 import PdfReader
|
31 |
+
from templates import bot_template, css, user_template
|
32 |
+
from xml.etree import ElementTree as ET
|
33 |
|
34 |
+
# Constants
|
35 |
+
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
|
36 |
API_KEY = os.getenv('API_KEY')
|
|
|
37 |
headers = {
|
38 |
"Authorization": f"Bearer {API_KEY}",
|
39 |
"Content-Type": "application/json"
|
40 |
}
|
|
|
|
|
41 |
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
|
42 |
+
# page config and sidebar declares up front allow all other functions to see global class variables
|
43 |
+
st.set_page_config(page_title="GPT Streamlit Document Reasoner", layout="wide")
|
44 |
+
|
45 |
+
# UI Controls
|
46 |
+
should_save = st.sidebar.checkbox("💾 Save", value=True)
|
47 |
|
48 |
+
# Functions
|
49 |
def StreamLLMChatResponse(prompt):
|
50 |
endpoint_url = API_URL
|
51 |
hf_token = API_KEY
|
|
|
71 |
collected_chunks.append(r.token.text)
|
72 |
chunk_message = r.token.text
|
73 |
collected_messages.append(chunk_message)
|
|
|
74 |
try:
|
75 |
report.append(r.token.text)
|
76 |
if len(r.token.text) > 0:
|
|
|
87 |
def get_output(prompt):
|
88 |
return query({"inputs": prompt})
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
def generate_filename(prompt, file_type):
|
91 |
central = pytz.timezone('US/Central')
|
92 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
|
|
106 |
st.write(response.json())
|
107 |
chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
|
108 |
transcript = response.json().get('text')
|
|
|
|
|
109 |
filename = generate_filename(transcript, 'txt')
|
|
|
110 |
response = chatResponse
|
111 |
user_prompt = transcript
|
112 |
create_file(filename, user_prompt, response, should_save)
|
|
|
129 |
def create_file(filename, prompt, response, should_save=True):
|
130 |
if not should_save:
|
131 |
return
|
|
|
|
|
132 |
base_filename, ext = os.path.splitext(filename)
|
|
|
|
|
133 |
has_python_code = bool(re.search(r"```python([\s\S]*?)```", response))
|
|
|
|
|
134 |
if ext in ['.txt', '.htm', '.md']:
|
|
|
135 |
with open(f"{base_filename}-Prompt.txt", 'w') as file:
|
136 |
file.write(prompt)
|
|
|
|
|
137 |
with open(f"{base_filename}-Response.md", 'w') as file:
|
138 |
file.write(response)
|
|
|
|
|
139 |
if has_python_code:
|
|
|
140 |
python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
|
|
|
141 |
with open(f"{base_filename}-Code.py", 'w') as file:
|
142 |
file.write(python_code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
def truncate_document(document, length):
|
145 |
return document[:length]
|
146 |
+
|
147 |
def divide_document(document, max_length):
|
148 |
return [document[i:i+max_length] for i in range(0, len(document), max_length)]
|
149 |
|
|
|
208 |
conversation.append({'role': 'user', 'content': prompt})
|
209 |
if len(document_section)>0:
|
210 |
conversation.append({'role': 'assistant', 'content': document_section})
|
|
|
211 |
start_time = time.time()
|
212 |
report = []
|
213 |
res_box = st.empty()
|
214 |
collected_chunks = []
|
215 |
collected_messages = []
|
216 |
+
for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True):
|
217 |
+
collected_chunks.append(chunk)
|
218 |
+
chunk_message = chunk['choices'][0]['delta']
|
219 |
+
collected_messages.append(chunk_message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
content=chunk["choices"][0].get("delta",{}).get("content")
|
|
|
221 |
try:
|
222 |
report.append(content)
|
223 |
if len(content) > 0:
|
224 |
result = "".join(report).strip()
|
|
|
225 |
res_box.markdown(f'*{result}*')
|
226 |
except:
|
227 |
st.write(' ')
|
|
|
228 |
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
|
229 |
st.write("Elapsed time:")
|
230 |
st.write(time.time() - start_time)
|
|
|
239 |
return response['choices'][0]['message']['content']
|
240 |
|
241 |
def extract_mime_type(file):
|
|
|
242 |
if isinstance(file, str):
|
243 |
pattern = r"type='(.*?)'"
|
244 |
match = re.search(pattern, file)
|
|
|
246 |
return match.group(1)
|
247 |
else:
|
248 |
raise ValueError(f"Unable to extract MIME type from {file}")
|
|
|
249 |
elif isinstance(file, streamlit.UploadedFile):
|
250 |
return file.type
|
251 |
else:
|
252 |
raise TypeError("Input should be a string or a streamlit.UploadedFile object")
|
253 |
|
|
|
|
|
|
|
254 |
def extract_file_extension(file):
|
255 |
# get the file name directly from the UploadedFile object
|
256 |
file_name = file.name
|
|
|
265 |
text = ""
|
266 |
for file in docs:
|
267 |
file_extension = extract_file_extension(file)
|
|
|
268 |
st.write(f"File type extension: {file_extension}")
|
|
|
|
|
269 |
try:
|
270 |
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
|
271 |
text += file.getvalue().decode('utf-8')
|
|
|
276 |
text += pdf.pages[page].extract_text() # new PyPDF2 syntax
|
277 |
except Exception as e:
|
278 |
st.write(f"Error processing file {file.name}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
return text
|
280 |
|
281 |
def txt2chunks(text):
|
|
|
298 |
for i, message in enumerate(st.session_state.chat_history):
|
299 |
template = user_template if i % 2 == 0 else bot_template
|
300 |
st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
|
|
301 |
filename = generate_filename(user_question, 'txt')
|
|
|
302 |
response = message.content
|
303 |
user_prompt = user_question
|
304 |
create_file(filename, user_prompt, response, should_save)
|
|
|
305 |
|
306 |
def divide_prompt(prompt, max_length):
|
307 |
words = prompt.split()
|
|
|
310 |
current_length = 0
|
311 |
for word in words:
|
312 |
if len(word) + current_length <= max_length:
|
313 |
+
current_length += len(word) + 1
|
314 |
current_chunk.append(word)
|
315 |
else:
|
316 |
chunks.append(' '.join(current_chunk))
|
317 |
current_chunk = [word]
|
318 |
current_length = len(word)
|
319 |
+
chunks.append(' '.join(current_chunk))
|
320 |
return chunks
|
321 |
|
322 |
def create_zip_of_files(files):
|
|
|
|
|
|
|
323 |
zip_name = "all_files.zip"
|
324 |
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
325 |
for file in files:
|
326 |
zipf.write(file)
|
327 |
return zip_name
|
328 |
|
|
|
329 |
def get_zip_download_link(zip_file):
|
|
|
|
|
|
|
330 |
with open(zip_file, 'rb') as f:
|
331 |
data = f.read()
|
332 |
b64 = base64.b64encode(data).decode()
|
333 |
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
|
334 |
return href
|
335 |
|
|
|
|
|
336 |
def main():
|
337 |
st.title("Medical Llama Test Bench with Inference Endpoints Llama 7B")
|
338 |
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
|
339 |
example_input = st.text_input("Enter your example text:", value=prompt)
|
|
|
340 |
if st.button("Run Prompt With Dr Llama"):
|
341 |
try:
|
342 |
StreamLLMChatResponse(example_input)
|
343 |
except:
|
344 |
st.write('Dr. Llama is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
|
|
|
|
|
|
|
345 |
openai.api_key = os.getenv('OPENAI_KEY')
|
|
|
|
|
346 |
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
|
347 |
choice = st.sidebar.selectbox("Output File Type:", menu)
|
348 |
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
|
|
|
|
|
349 |
filename = save_and_play_audio(audio_recorder)
|
350 |
if filename is not None:
|
351 |
transcription = transcribe_audio(openai.api_key, filename, "whisper-1")
|
352 |
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
353 |
filename = None
|
|
|
|
|
354 |
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
|
|
|
|
|
355 |
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
|
356 |
with collength:
|
357 |
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
|
358 |
with colupload:
|
359 |
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
|
|
|
|
|
|
|
|
|
360 |
document_sections = deque()
|
361 |
document_responses = {}
|
362 |
if uploaded_file is not None:
|
|
|
374 |
else:
|
375 |
if st.button(f"Chat about Section {i+1}"):
|
376 |
st.write('Reasoning with your inputs...')
|
377 |
+
response = chat_with_model(user_prompt, section, model_choice)
|
378 |
st.write('Response:')
|
379 |
st.write(response)
|
380 |
document_responses[i] = response
|
381 |
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
|
382 |
create_file(filename, user_prompt, response, should_save)
|
383 |
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
|
|
384 |
if st.button('💬 Chat'):
|
385 |
st.write('Reasoning with your inputs...')
|
|
|
|
|
|
|
|
|
386 |
user_prompt_sections = divide_prompt(user_prompt, max_length)
|
387 |
full_response = ''
|
388 |
for prompt_section in user_prompt_sections:
|
|
|
389 |
response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
|
390 |
full_response += response + '\n' # Combine the responses
|
|
|
|
|
|
|
|
|
391 |
response = full_response
|
392 |
st.write('Response:')
|
393 |
st.write(response)
|
|
|
394 |
filename = generate_filename(user_prompt, choice)
|
395 |
create_file(filename, user_prompt, response, should_save)
|
396 |
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
|
|
397 |
all_files = glob.glob("*.*")
|
398 |
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names
|
399 |
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
|
|
|
|
|
400 |
if st.sidebar.button("🗑 Delete All"):
|
401 |
for file in all_files:
|
402 |
os.remove(file)
|
403 |
st.experimental_rerun()
|
|
|
|
|
404 |
if st.sidebar.button("⬇️ Download All"):
|
405 |
zip_file = create_zip_of_files(all_files)
|
406 |
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
|
|
|
|
|
407 |
file_contents=''
|
408 |
next_action=''
|
409 |
for file in all_files:
|
|
|
429 |
if st.button("🗑", key="delete_"+file):
|
430 |
os.remove(file)
|
431 |
st.experimental_rerun()
|
|
|
432 |
if len(file_contents) > 0:
|
433 |
if next_action=='open':
|
434 |
file_content_area = st.text_area("File Contents:", file_contents, height=500)
|
|
|
440 |
response = chat_with_model(user_prompt, file_contents, model_choice)
|
441 |
filename = generate_filename(file_contents, choice)
|
442 |
create_file(filename, user_prompt, response, should_save)
|
|
|
443 |
st.experimental_rerun()
|
|
|
|
|
444 |
|
445 |
load_dotenv()
|
446 |
st.write(css, unsafe_allow_html=True)
|
|
|
447 |
st.header("Chat with documents :books:")
|
448 |
user_question = st.text_input("Ask a question about your documents:")
|
449 |
if user_question:
|
450 |
process_user_input(user_question)
|
|
|
451 |
with st.sidebar:
|
452 |
st.subheader("Your documents")
|
453 |
docs = st.file_uploader("import documents", accept_multiple_files=True)
|
|
|
461 |
st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
|
462 |
filename = generate_filename(raw, 'txt')
|
463 |
create_file(filename, raw, '', should_save)
|
|
|
|
|
|
|
|
|
|
|
464 |
|
465 |
if __name__ == "__main__":
|
466 |
main()
|