Spaces:
Sleeping
Sleeping
import requests | |
import streamlit as st | |
import os | |
from huggingface_hub import InferenceClient | |
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' | |
API_KEY = os.getenv('API_KEY') | |
headers = { | |
"Authorization": f"Bearer {API_KEY}", | |
"Content-Type": "application/json" | |
} | |
endpoint_url = API_URL | |
hf_token = API_KEY | |
client = InferenceClient(endpoint_url, token=hf_token) | |
gen_kwargs = dict( | |
max_new_tokens=512, | |
top_k=30, | |
top_p=0.9, | |
temperature=0.2, | |
repetition_penalty=1.02, | |
stop_sequences=["\nUser:", "<|endoftext|>", "</s>"], | |
) | |
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface." | |
stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs) | |
report=[] | |
res_box = st.empty() | |
collected_chunks=[] | |
collected_messages=[] | |
for r in stream: | |
if r.token.special: | |
continue | |
if r.token.text in gen_kwargs["stop_sequences"]: | |
break | |
collected_chunks.append(r.token.text) | |
#chunk_message = r.token.text | |
collected_messages.append(chunk_message) | |
try: | |
report.append(content) | |
if len(r.token.text) > 0: | |
result="".join(report).strip() | |
res_box.markdown(f'*{result}*') | |
#full_reply = ''.join() | |
#st.markdown(r.token.text, end = "") | |
#st.write(r.token.text) | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
st.markdown(response.json()) | |
return response.json() | |
def get_output(prompt): | |
return query({"inputs": prompt}) | |
def main(): | |
st.title("Medical Llama Test Bench with Inference Endpoints Llama 7B") | |
example_input = st.text_input("Enter your example text:") | |
if st.button("Summarize with Variation 1"): | |
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface. {example_input}" | |
output = get_output(prompt) | |
st.markdown(f"**Output:** {output}") | |
if st.button("Summarize with Variation 2"): | |
prompt = f"Provide a summary of the medical transcription. Highlight the important entities, features, and relationships to CCDA and FHIR objects. {example_input}" | |
output = get_output(prompt) | |
st.markdown(f"**Output:** {output}") | |
if __name__ == "__main__": | |
main() |