File size: 2,248 Bytes
09aaa9c 4485862 09aaa9c a6d5ae5 09aaa9c f93d945 4485862 09aaa9c f93d945 a6d5ae5 f93d945 09aaa9c f93d945 4485862 f93d945 a6d5ae5 f93d945 09aaa9c a6d5ae5 f4739ca a6d5ae5 f4739ca 2c19de2 a6d5ae5 2c19de2 a6d5ae5 2c19de2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from transformers import WhisperModel, WhisperFeatureExtractor
import datasets
from datasets import load_dataset, DatasetDict, Audio
from huggingface_hub import PyTorchModelHubMixin
import numpy as np
# [Your existing code for device setup, config, SpeechInferenceDataset, SpeechClassifier]
# Prepare data function
def prepare_data(audio_data, sampling_rate, model_checkpoint="openai/whisper-base"):
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_checkpoint)
inputs = feature_extractor(audio_data, sampling_rate=sampling_rate, return_tensors="pt")
input_features = inputs.input_features
decoder_input_ids = torch.tensor([[1, 1]])
return input_features.to(device), decoder_input_ids.to(device)
# Prediction function
def predict(audio_data, sampling_rate, config):
input_features, decoder_input_ids = prepare_data(audio_data, sampling_rate, config["encoder"])
model = SpeechClassifier(config).to(device)
model.load_state_dict(torch.hub.load_state_dict_from_url("https://huggingface.co/jcho02/whisper_cleft/resolve/main/pytorch_model.bin", map_location=device))
model.eval()
with torch.no_grad():
logits = model(input_features, decoder_input_ids)
predicted_ids = int(torch.argmax(logits, dim=-1))
return predicted_ids
# Unified Gradio interface function
def gradio_interface(audio_input):
if isinstance(audio_input, tuple):
# If the input is a tuple, it's from the microphone
audio_data, sample_rate = audio_input
else:
# Otherwise, it's an uploaded file
with open(audio_input, "rb") as f:
audio_data = np.frombuffer(f.read(), np.int16)
sample_rate = 16000 # Assume 16kHz sample rate for uploaded files
prediction = predict(audio_data, sample_rate, config)
label = "Hypernasality Detected" if prediction == 1 else "No Hypernasality Detected"
return label
# Create Gradio interface
demo = gr.Interface(
fn=gradio_interface,
inputs=gr.Audio(type="numpy", label="Upload or Record Audio"),
outputs=gr.Textbox(label="Prediction")
)
# Launch the demo
demo.launch(debug=True)
|