|
|
|
import gradio as gr |
|
import argparse, configparser, datetime, json, logging, os, platform, requests, shutil, subprocess, sys, time, unicodedata |
|
import zipfile |
|
from datetime import datetime |
|
import contextlib |
|
import ffmpeg |
|
import torch |
|
import yt_dlp |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config = configparser.ConfigParser() |
|
config.read('config.txt') |
|
|
|
|
|
anthropic_api_key = config.get('API', 'anthropic_api_key', fallback=None) |
|
cohere_api_key = config.get('API', 'cohere_api_key', fallback=None) |
|
groq_api_key = config.get('API', 'groq_api_key', fallback=None) |
|
openai_api_key = config.get('API', 'openai_api_key', fallback=None) |
|
huggingface_api_key = config.get('API', 'huggingface_api_key', fallback=None) |
|
|
|
|
|
anthropic_model = config.get('API', 'anthropic_model', fallback='claude-3-sonnet-20240229') |
|
cohere_model = config.get('API', 'cohere_model', fallback='command-r-plus') |
|
groq_model = config.get('API', 'groq_model', fallback='FIXME') |
|
openai_model = config.get('API', 'openai_model', fallback='gpt-4-turbo') |
|
huggingface_model = config.get('API', 'huggingface_model', fallback='microsoft/Phi-3-mini-128k-instruct') |
|
|
|
|
|
kobold_api_IP = config.get('Local-API', 'kobold_api_IP', fallback='http://127.0.0.1:5000/api/v1/generate') |
|
kobold_api_key = config.get('Local-API', 'kobold_api_key', fallback='') |
|
llama_api_IP = config.get('Local-API', 'llama_api_IP', fallback='http://127.0.0.1:8080/v1/chat/completions') |
|
llama_api_key = config.get('Local-API', 'llama_api_key', fallback='') |
|
ooba_api_IP = config.get('Local-API', 'ooba_api_IP', fallback='http://127.0.0.1:5000/v1/chat/completions') |
|
ooba_api_key = config.get('Local-API', 'ooba_api_key', fallback='') |
|
|
|
|
|
output_path = config.get('Paths', 'output_path', fallback='results') |
|
|
|
|
|
processing_choice = config.get('Processing', 'processing_choice', fallback='cpu') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
os.environ['KMP_DUPLICATE_LIB_OK']='True' |
|
|
|
whisper_models = ["small", "medium", "small.en","medium.en"] |
|
source_languages = { |
|
"en": "English", |
|
"zh": "Chinese", |
|
"de": "German", |
|
"es": "Spanish", |
|
"ru": "Russian", |
|
"ko": "Korean", |
|
"fr": "French" |
|
} |
|
source_language_list = [key[0] for key in source_languages.items()] |
|
|
|
|
|
|
|
|
|
print(r"""_____ _ ________ _ _ |
|
|_ _|| | / /| _ \| | | | _ |
|
| | | | / / | | | || | | |(_) |
|
| | | | / / | | | || |/\| | |
|
| | | |____ / / | |/ / \ /\ / _ |
|
\_/ \_____//_/ |___/ \/ \/ (_) |
|
|
|
|
|
_ _ |
|
| | | | |
|
| |_ ___ ___ | | ___ _ __ __ _ |
|
| __| / _ \ / _ \ | | / _ \ | '_ \ / _` | |
|
| |_ | (_) || (_) | | || (_) || | | || (_| | _ |
|
\__| \___/ \___/ |_| \___/ |_| |_| \__, |( ) |
|
__/ ||/ |
|
|___/ |
|
_ _ _ _ _ _ _ |
|
| |(_) | | ( )| | | | | | |
|
__| | _ __| | _ __ |/ | |_ __ __ __ _ | |_ ___ | |__ |
|
/ _` || | / _` || '_ \ | __| \ \ /\ / / / _` || __| / __|| '_ \ |
|
| (_| || || (_| || | | | | |_ \ V V / | (_| || |_ | (__ | | | | |
|
\__,_||_| \__,_||_| |_| \__| \_/\_/ \__,_| \__| \___||_| |_| |
|
""") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
userOS = "" |
|
def platform_check(): |
|
global userOS |
|
if platform.system() == "Linux": |
|
print("Linux OS detected \n Running Linux appropriate commands") |
|
userOS = "Linux" |
|
elif platform.system() == "Windows": |
|
print("Windows OS detected \n Running Windows appropriate commands") |
|
userOS = "Windows" |
|
else: |
|
print("Other OS detected \n Maybe try running things manually?") |
|
exit() |
|
|
|
|
|
|
|
|
|
def cuda_check(): |
|
global processing_choice |
|
try: |
|
nvidia_smi = subprocess.check_output("nvidia-smi", shell=True).decode() |
|
if "NVIDIA-SMI" in nvidia_smi: |
|
print("NVIDIA GPU with CUDA is available.") |
|
processing_choice = "cuda" |
|
else: |
|
print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.") |
|
processing_choice = "cpu" |
|
except subprocess.CalledProcessError: |
|
print("NVIDIA GPU with CUDA is not available.\nYou either have an AMD GPU, or you're stuck with CPU only.") |
|
processing_choice = "cpu" |
|
|
|
|
|
|
|
|
|
def decide_cpugpu(): |
|
global processing_choice |
|
processing_input = input("Would you like to use your GPU or CPU for transcription? (1/cuda)GPU/(2/cpu)CPU): ") |
|
if processing_choice == "cuda" and (processing_input.lower() == "cuda" or processing_input == "1"): |
|
print("You've chosen to use the GPU.") |
|
logging.debug("GPU is being used for processing") |
|
processing_choice = "cuda" |
|
elif processing_input.lower() == "cpu" or processing_input == "2": |
|
print("You've chosen to use the CPU.") |
|
logging.debug("CPU is being used for processing") |
|
processing_choice = "cpu" |
|
else: |
|
print("Invalid choice. Please select either GPU or CPU.") |
|
|
|
|
|
|
|
|
|
def check_ffmpeg(): |
|
if shutil.which("ffmpeg") or (os.path.exists("Bin") and os.path.isfile(".\\Bin\\ffmpeg.exe")): |
|
logging.debug("ffmpeg found installed on the local system, in the local PATH, or in the './Bin' folder") |
|
pass |
|
else: |
|
logging.debug("ffmpeg not installed on the local system/in local PATH") |
|
print("ffmpeg is not installed.\n\n You can either install it manually, or through your package manager of choice.\n Windows users, builds are here: https://www.gyan.dev/ffmpeg/builds/") |
|
if userOS == "Windows": |
|
download_ffmpeg() |
|
elif userOS == "Linux": |
|
print("You should install ffmpeg using your platform's appropriate package manager, 'apt install ffmpeg','dnf install ffmpeg' or 'pacman', etc.") |
|
else: |
|
logging.debug("running an unsupported OS") |
|
print("You're running an unspported/Un-tested OS") |
|
exit_script = input("Let's exit the script, unless you're feeling lucky? (y/n)") |
|
if exit_script == "y" or "yes" or "1": |
|
exit() |
|
|
|
|
|
|
|
|
|
def download_ffmpeg(): |
|
user_choice = input("Do you want to download ffmpeg? (y)Yes/(n)No: ") |
|
if user_choice.lower() == 'yes' or 'y' or '1': |
|
print("Downloading ffmpeg") |
|
url = "https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-essentials.zip" |
|
response = requests.get(url) |
|
|
|
if response.status_code == 200: |
|
print("Saving ffmpeg zip file") |
|
logging.debug("Saving ffmpeg zip file") |
|
zip_path = "ffmpeg-release-essentials.zip" |
|
with open(zip_path, 'wb') as file: |
|
file.write(response.content) |
|
|
|
logging.debug("Extracting the 'ffmpeg.exe' file from the zip") |
|
print("Extracting ffmpeg.exe from zip file to '/Bin' folder") |
|
with zipfile.ZipFile(zip_path, 'r') as zip_ref: |
|
ffmpeg_path = "ffmpeg-7.0-essentials_build/bin/ffmpeg.exe" |
|
|
|
logging.debug("checking if the './Bin' folder exists, creating if not") |
|
bin_folder = "Bin" |
|
if not os.path.exists(bin_folder): |
|
logging.debug("Creating a folder for './Bin', it didn't previously exist") |
|
os.makedirs(bin_folder) |
|
|
|
logging.debug("Extracting 'ffmpeg.exe' to the './Bin' folder") |
|
zip_ref.extract(ffmpeg_path, path=bin_folder) |
|
|
|
logging.debug("Moving 'ffmpeg.exe' to the './Bin' folder") |
|
src_path = os.path.join(bin_folder, ffmpeg_path) |
|
dst_path = os.path.join(bin_folder, "ffmpeg.exe") |
|
shutil.move(src_path, dst_path) |
|
|
|
logging.debug("Removing ffmpeg zip file") |
|
print("Deleting zip file (we've already extracted ffmpeg.exe, no worries)") |
|
os.remove(zip_path) |
|
|
|
logging.debug("ffmpeg.exe has been downloaded and extracted to the './Bin' folder.") |
|
print("ffmpeg.exe has been successfully downloaded and extracted to the './Bin' folder.") |
|
else: |
|
logging.error("Failed to download the zip file.") |
|
print("Failed to download the zip file.") |
|
else: |
|
logging.debug("User chose to not download ffmpeg") |
|
print("ffmpeg will not be downloaded.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def read_paths_from_file(file_path): |
|
""" Reads a file containing URLs or local file paths and returns them as a list. """ |
|
paths = [] |
|
with open(file_path, 'r') as file: |
|
for line in file: |
|
line = line.strip() |
|
if line and not os.path.exists(os.path.join('results', normalize_title(line.split('/')[-1].split('.')[0]) + '.json')): |
|
logging.debug("line successfully imported from file and added to list to be transcribed") |
|
paths.append(line) |
|
return paths |
|
|
|
|
|
|
|
def process_path(path): |
|
""" Decides whether the path is a URL or a local file and processes accordingly. """ |
|
if path.startswith('http'): |
|
logging.debug("file is a URL") |
|
return get_youtube(path) |
|
elif os.path.exists(path): |
|
logging.debug("File is a path") |
|
return process_local_file(path) |
|
else: |
|
logging.error(f"Path does not exist: {path}") |
|
return None |
|
|
|
|
|
|
|
|
|
def process_local_file(file_path): |
|
logging.info(f"Processing local file: {file_path}") |
|
title = normalize_title(os.path.splitext(os.path.basename(file_path))[0]) |
|
info_dict = {'title': title} |
|
logging.debug(f"Creating {title} directory...") |
|
download_path = create_download_directory(title) |
|
logging.debug(f"Converting '{title}' to an audio file (wav).") |
|
audio_file = convert_to_wav(file_path) |
|
logging.debug(f"'{title}' succesfully converted to an audio file (wav).") |
|
return download_path, info_dict, audio_file |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def process_url(input_path, num_speakers=2, whisper_model="small.en", offset=0, api_name=None, api_key=None, vad_filter=False, download_video_flag=False, demo_mode=False): |
|
if demo_mode: |
|
api_name = "huggingface" |
|
api_key = os.environ.get("HF_TOKEN") |
|
vad_filter = False |
|
download_video_flag = False |
|
|
|
try: |
|
results = main(input_path, api_name=api_name, api_key=api_key, num_speakers=num_speakers, whisper_model=whisper_model, offset=offset, vad_filter=vad_filter, download_video_flag=download_video_flag) |
|
|
|
if results: |
|
transcription_result = results[0] |
|
json_file_path = transcription_result['audio_file'].replace('.wav', '.segments.json') |
|
with open(json_file_path, 'r') as file: |
|
json_data = json.load(file) |
|
|
|
summary_file_path = json_file_path.replace('.segments.json', '_summary.txt') |
|
if os.path.exists(summary_file_path): |
|
return json_data, summary_file_path, json_file_path, summary_file_path |
|
else: |
|
return json_data, "Summary not available.", json_file_path, None |
|
else: |
|
return None, "No results found.", None, None |
|
except Exception as e: |
|
error_message = f"An error occurred: {str(e)}" |
|
return None, error_message, None, None |
|
|
|
|
|
|
|
def create_download_directory(title): |
|
base_dir = "Results" |
|
|
|
safe_title = normalize_title(title) |
|
logging.debug(f"{title} successfully normalized") |
|
session_path = os.path.join(base_dir, safe_title) |
|
if not os.path.exists(session_path): |
|
os.makedirs(session_path, exist_ok=True) |
|
logging.debug(f"Created directory for downloaded video: {session_path}") |
|
else: |
|
logging.debug(f"Directory already exists for downloaded video: {session_path}") |
|
return session_path |
|
|
|
|
|
|
|
def normalize_title(title): |
|
|
|
title = unicodedata.normalize('NFKD', title).encode('ascii', 'ignore').decode('ascii') |
|
title = title.replace('/', '_').replace('\\', '_').replace(':', '_').replace('"', '').replace('*', '').replace('?', '').replace('<', '').replace('>', '').replace('|', '') |
|
return title |
|
|
|
|
|
|
|
def get_youtube(video_url): |
|
ydl_opts = { |
|
'format': 'bestaudio[ext=m4a]', |
|
'noplaylist': False, |
|
'quiet': True, |
|
'extract_flat': True |
|
} |
|
with yt_dlp.YoutubeDL(ydl_opts) as ydl: |
|
logging.debug("About to extract youtube info") |
|
info_dict = ydl.extract_info(video_url, download=False) |
|
logging.debug("Youtube info successfully extracted") |
|
return info_dict |
|
|
|
|
|
|
|
def get_playlist_videos(playlist_url): |
|
ydl_opts = { |
|
'extract_flat': True, |
|
'skip_download': True, |
|
'quiet': True |
|
} |
|
|
|
with yt_dlp.YoutubeDL(ydl_opts) as ydl: |
|
info = ydl.extract_info(playlist_url, download=False) |
|
|
|
if 'entries' in info: |
|
video_urls = [entry['url'] for entry in info['entries']] |
|
playlist_title = info['title'] |
|
return video_urls, playlist_title |
|
else: |
|
print("No videos found in the playlist.") |
|
return [], None |
|
|
|
|
|
|
|
def save_to_file(video_urls, filename): |
|
with open(filename, 'w') as file: |
|
file.write('\n'.join(video_urls)) |
|
print(f"Video URLs saved to {filename}") |
|
|
|
|
|
|
|
def download_video(video_url, download_path, info_dict, download_video_flag): |
|
logging.debug("About to normalize downloaded video title") |
|
title = normalize_title(info_dict['title']) |
|
|
|
if download_video_flag == False: |
|
file_path = os.path.join(download_path, f"{title}.m4a") |
|
ydl_opts = { |
|
'format': 'bestaudio[ext=m4a]', |
|
'outtmpl': file_path, |
|
} |
|
with yt_dlp.YoutubeDL(ydl_opts) as ydl: |
|
logging.debug("yt_dlp: About to download audio with youtube-dl") |
|
ydl.download([video_url]) |
|
logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl") |
|
return file_path |
|
else: |
|
video_file_path = os.path.join(download_path, f"{title}_video.mp4") |
|
audio_file_path = os.path.join(download_path, f"{title}_audio.m4a") |
|
ydl_opts_video = { |
|
'format': 'bestvideo[ext=mp4]', |
|
'outtmpl': video_file_path, |
|
} |
|
ydl_opts_audio = { |
|
'format': 'bestaudio[ext=m4a]', |
|
'outtmpl': audio_file_path, |
|
} |
|
|
|
with yt_dlp.YoutubeDL(ydl_opts_video) as ydl: |
|
logging.debug("yt_dlp: About to download video with youtube-dl") |
|
ydl.download([video_url]) |
|
logging.debug("yt_dlp: Video successfully downloaded with youtube-dl") |
|
|
|
with yt_dlp.YoutubeDL(ydl_opts_audio) as ydl: |
|
logging.debug("yt_dlp: About to download audio with youtube-dl") |
|
ydl.download([video_url]) |
|
logging.debug("yt_dlp: Audio successfully downloaded with youtube-dl") |
|
|
|
output_file_path = os.path.join(download_path, f"{title}.mp4") |
|
|
|
if userOS == "Windows": |
|
logging.debug("Running ffmpeg on Windows...") |
|
ffmpeg_command = [ |
|
'.\\Bin\\ffmpeg.exe', |
|
'-i', video_file_path, |
|
'-i', audio_file_path, |
|
'-c:v', 'copy', |
|
'-c:a', 'copy', |
|
output_file_path |
|
] |
|
subprocess.run(ffmpeg_command, check=True) |
|
elif userOS == "Linux": |
|
logging.debug("Running ffmpeg on Linux...") |
|
ffmpeg_command = [ |
|
'ffmpeg', |
|
'-i', video_file_path, |
|
'-i', audio_file_path, |
|
'-c:v', 'copy', |
|
'-c:a', 'copy', |
|
output_file_path |
|
] |
|
subprocess.run(ffmpeg_command, check=True) |
|
else: |
|
logging.error("You shouldn't be here...") |
|
exit() |
|
os.remove(video_file_path) |
|
os.remove(audio_file_path) |
|
|
|
return output_file_path |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def convert_to_wav(video_file_path, offset=0): |
|
print("Starting conversion process of .m4a to .WAV") |
|
out_path = os.path.splitext(video_file_path)[0] + ".wav" |
|
|
|
try: |
|
if os.name == "nt": |
|
logging.debug("ffmpeg being ran on windows") |
|
|
|
if sys.platform.startswith('win'): |
|
ffmpeg_cmd = ".\\Bin\\ffmpeg.exe" |
|
else: |
|
ffmpeg_cmd = 'ffmpeg' |
|
|
|
command = [ |
|
ffmpeg_cmd, |
|
"-ss", "00:00:00", |
|
"-i", video_file_path, |
|
"-ar", "16000", |
|
"-ac", "1", |
|
"-c:a", "pcm_s16le", |
|
out_path |
|
] |
|
try: |
|
|
|
with open(os.devnull, 'rb') as null_file: |
|
result = subprocess.run(command, stdin=null_file, text=True, capture_output=True) |
|
if result.returncode == 0: |
|
logging.info("FFmpeg executed successfully") |
|
logging.debug("FFmpeg output: %s", result.stdout) |
|
else: |
|
logging.error("Error in running FFmpeg") |
|
logging.error("FFmpeg stderr: %s", result.stderr) |
|
raise RuntimeError(f"FFmpeg error: {result.stderr}") |
|
except Exception as e: |
|
logging.error("Error occurred - ffmpeg doesn't like windows") |
|
raise RuntimeError("ffmpeg failed") |
|
exit() |
|
elif os.name == "posix": |
|
os.system(f'ffmpeg -ss 00:00:00 -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{out_path}"') |
|
else: |
|
raise RuntimeError("Unsupported operating system") |
|
logging.info("Conversion to WAV completed: %s", out_path) |
|
except subprocess.CalledProcessError as e: |
|
logging.error("Error executing FFmpeg command: %s", str(e)) |
|
raise RuntimeError("Error converting video file to WAV") |
|
except Exception as e: |
|
logging.error("Unexpected error occurred: %s", str(e)) |
|
raise RuntimeError("Error converting video file to WAV") |
|
return out_path |
|
|
|
|
|
|
|
|
|
def speech_to_text(audio_file_path, selected_source_lang='en', whisper_model='small.en', vad_filter=False): |
|
logging.info('Loading faster_whisper model: %s', whisper_model) |
|
from faster_whisper import WhisperModel |
|
model = WhisperModel(whisper_model, device=f"{processing_choice}") |
|
time_start = time.time() |
|
if audio_file_path is None: |
|
raise ValueError("No audio file provided") |
|
logging.info("Audio file path: %s", audio_file_path) |
|
|
|
try: |
|
_, file_ending = os.path.splitext(audio_file_path) |
|
out_file = audio_file_path.replace(file_ending, ".segments.json") |
|
if os.path.exists(out_file): |
|
logging.info("Segments file already exists: %s", out_file) |
|
with open(out_file) as f: |
|
segments = json.load(f) |
|
return segments |
|
|
|
logging.info('Starting transcription...') |
|
options = dict(language=selected_source_lang, beam_size=5, best_of=5, vad_filter=vad_filter) |
|
transcribe_options = dict(task="transcribe", **options) |
|
segments_raw, info = model.transcribe(audio_file_path, **transcribe_options) |
|
|
|
segments = [] |
|
for segment_chunk in segments_raw: |
|
chunk = { |
|
"start": segment_chunk.start, |
|
"end": segment_chunk.end, |
|
"text": segment_chunk.text |
|
} |
|
logging.debug("Segment: %s", chunk) |
|
segments.append(chunk) |
|
logging.info("Transcription completed with faster_whisper") |
|
with open(out_file, 'w') as f: |
|
json.dump(segments, f, indent=2) |
|
except Exception as e: |
|
logging.error("Error transcribing audio: %s", str(e)) |
|
raise RuntimeError("Error transcribing audio") |
|
return segments |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def speaker_diarize(video_file_path, segments, embedding_model = "pyannote/embedding", embedding_size=512, num_speakers=0): |
|
""" |
|
1. Generating speaker embeddings for each segments. |
|
2. Applying agglomerative clustering on the embeddings to identify the speaker for each segment. |
|
""" |
|
try: |
|
from pyannote.audio import Audio |
|
from pyannote.core import Segment |
|
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding |
|
import numpy as np |
|
import pandas as pd |
|
from sklearn.cluster import AgglomerativeClustering |
|
from sklearn.metrics import silhouette_score |
|
import tqdm |
|
import wave |
|
|
|
embedding_model = PretrainedSpeakerEmbedding( embedding_model, device=torch.device("cuda" if torch.cuda.is_available() else "cpu")) |
|
|
|
|
|
_,file_ending = os.path.splitext(f'{video_file_path}') |
|
audio_file = video_file_path.replace(file_ending, ".wav") |
|
out_file = video_file_path.replace(file_ending, ".diarize.json") |
|
|
|
logging.debug("getting duration of audio file") |
|
with contextlib.closing(wave.open(audio_file,'r')) as f: |
|
frames = f.getnframes() |
|
rate = f.getframerate() |
|
duration = frames / float(rate) |
|
logging.debug("duration of audio file obtained") |
|
print(f"duration of audio file: {duration}") |
|
|
|
def segment_embedding(segment): |
|
logging.debug("Creating embedding") |
|
audio = Audio() |
|
start = segment["start"] |
|
end = segment["end"] |
|
|
|
|
|
if end-start < 0.3: |
|
padding = 0.3-(end-start) |
|
start -= padding/2 |
|
end += padding/2 |
|
print('Padded segment because it was too short:',segment) |
|
|
|
|
|
end = min(duration, end) |
|
|
|
clip = Segment(start, end) |
|
waveform, sample_rate = audio.crop(audio_file, clip) |
|
return embedding_model(waveform[None]) |
|
|
|
embeddings = np.zeros(shape=(len(segments), embedding_size)) |
|
for i, segment in enumerate(tqdm.tqdm(segments)): |
|
embeddings[i] = segment_embedding(segment) |
|
embeddings = np.nan_to_num(embeddings) |
|
print(f'Embedding shape: {embeddings.shape}') |
|
|
|
if num_speakers == 0: |
|
|
|
score_num_speakers = {} |
|
|
|
for num_speakers in range(2, 10+1): |
|
clustering = AgglomerativeClustering(num_speakers).fit(embeddings) |
|
score = silhouette_score(embeddings, clustering.labels_, metric='euclidean') |
|
score_num_speakers[num_speakers] = score |
|
best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x]) |
|
print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score") |
|
else: |
|
best_num_speaker = num_speakers |
|
|
|
|
|
clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings) |
|
labels = clustering.labels_ |
|
for i in range(len(segments)): |
|
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1) |
|
|
|
with open(out_file,'w') as f: |
|
f.write(json.dumps(segments, indent=2)) |
|
|
|
|
|
def convert_time(secs): |
|
return datetime.timedelta(seconds=round(secs)) |
|
|
|
objects = { |
|
'Start' : [], |
|
'End': [], |
|
'Speaker': [], |
|
'Text': [] |
|
} |
|
text = '' |
|
for (i, segment) in enumerate(segments): |
|
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]: |
|
objects['Start'].append(str(convert_time(segment["start"]))) |
|
objects['Speaker'].append(segment["speaker"]) |
|
if i != 0: |
|
objects['End'].append(str(convert_time(segments[i - 1]["end"]))) |
|
objects['Text'].append(text) |
|
text = '' |
|
text += segment["text"] + ' ' |
|
objects['End'].append(str(convert_time(segments[i - 1]["end"]))) |
|
objects['Text'].append(text) |
|
|
|
save_path = video_file_path.replace(file_ending, ".csv") |
|
df_results = pd.DataFrame(objects) |
|
df_results.to_csv(save_path) |
|
return df_results, save_path |
|
|
|
except Exception as e: |
|
raise RuntimeError("Error Running inference with local model", e) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_text_from_segments(segments): |
|
logging.debug(f"openai: extracting text from {segments}") |
|
text = ' '.join([segment['text'] for segment in segments]) |
|
return text |
|
|
|
|
|
|
|
def summarize_with_openai(api_key, file_path, model): |
|
try: |
|
logging.debug("openai: Loading json data for summarization") |
|
with open(file_path, 'r') as file: |
|
segments = json.load(file) |
|
|
|
logging.debug("openai: Extracting text from the segments") |
|
text = extract_text_from_segments(segments) |
|
|
|
headers = { |
|
'Authorization': f'Bearer {api_key}', |
|
'Content-Type': 'application/json' |
|
} |
|
|
|
logging.debug("openai: Preparing data + prompt for submittal") |
|
prompt_text = f"{text} \n\n\n\nPlease provide a detailed, bulleted list of the points made throughout the transcribed video and any supporting arguments made for said points" |
|
data = { |
|
"model": model, |
|
"messages": [ |
|
{ |
|
"role": "system", |
|
"content": "You are a professional summarizer." |
|
}, |
|
{ |
|
"role": "user", |
|
"content": prompt_text |
|
} |
|
], |
|
"max_tokens": 4096, |
|
"temperature": 0.7 |
|
} |
|
logging.debug("openai: Posting request") |
|
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) |
|
|
|
if response.status_code == 200: |
|
summary = response.json()['choices'][0]['message']['content'].strip() |
|
logging.debug("openai: Summarization successful") |
|
print("Summarization successful.") |
|
return summary |
|
else: |
|
logging.debug("openai: Summarization failed") |
|
print("Failed to process summary:", response.text) |
|
return None |
|
except Exception as e: |
|
logging.debug("openai: Error in processing: %s", str(e)) |
|
print("Error occurred while processing summary with openai:", str(e)) |
|
return None |
|
|
|
|
|
|
|
def summarize_with_claude(api_key, file_path, model): |
|
try: |
|
logging.debug("anthropic: Loading JSON data") |
|
with open(file_path, 'r') as file: |
|
segments = json.load(file) |
|
|
|
logging.debug("anthropic: Extracting text from the segments file") |
|
text = extract_text_from_segments(segments) |
|
|
|
headers = { |
|
'x-api-key': api_key, |
|
'anthropic-version': '2023-06-01', |
|
'Content-Type': 'application/json' |
|
} |
|
|
|
logging.debug("anthropic: Prepping data + prompt for submittal") |
|
user_message = { |
|
"role": "user", |
|
"content": f"{text} \n\n\n\nPlease provide a detailed, bulleted list of the points made throughout the transcribed video and any supporting arguments made for said points" |
|
} |
|
|
|
data = { |
|
"model": model, |
|
"max_tokens": 4096, |
|
"messages": [user_message], |
|
"stop_sequences": ["\n\nHuman:"], |
|
"temperature": 0.7, |
|
"top_k": 0, |
|
"top_p": 1.0, |
|
"metadata": { |
|
"user_id": "example_user_id", |
|
}, |
|
"stream": False, |
|
"system": "You are a professional summarizer." |
|
} |
|
|
|
logging.debug("anthropic: Posting request to API") |
|
response = requests.post('https://api.anthropic.com/v1/messages', headers=headers, json=data) |
|
|
|
|
|
if response.status_code == 200: |
|
logging.debug("anthropic: Post submittal successful") |
|
response_data = response.json() |
|
try: |
|
summary = response_data['content'][0]['text'].strip() |
|
logging.debug("anthropic: Summarization succesful") |
|
print("Summary processed successfully.") |
|
return summary |
|
except (IndexError, KeyError) as e: |
|
logging.debug("anthropic: Unexpected data in response") |
|
print("Unexpected response format from Claude API:", response.text) |
|
return None |
|
elif response.status_code == 500: |
|
logging.debug("anthropic: Internal server error") |
|
print("Internal server error from API. Retrying may be necessary.") |
|
return None |
|
else: |
|
logging.debug(f"anthropic: Failed to summarize, status code {response.status_code}: {response.text}") |
|
print(f"Failed to process summary, status code {response.status_code}: {response.text}") |
|
return None |
|
|
|
except Exception as e: |
|
logging.debug("anthropic: Error in processing: %s", str(e)) |
|
print("Error occurred while processing summary with anthropic:", str(e)) |
|
return None |
|
|
|
|
|
|
|
|
|
def summarize_with_cohere(api_key, file_path, model): |
|
try: |
|
logging.basicConfig(level=logging.DEBUG) |
|
logging.debug("cohere: Loading JSON data") |
|
with open(file_path, 'r') as file: |
|
segments = json.load(file) |
|
|
|
logging.debug(f"cohere: Extracting text from segments file") |
|
text = extract_text_from_segments(segments) |
|
|
|
headers = { |
|
'accept': 'application/json', |
|
'content-type': 'application/json', |
|
'Authorization': f'Bearer {api_key}' |
|
} |
|
|
|
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text." |
|
data = { |
|
"chat_history": [ |
|
{"role": "USER", "message": prompt_text} |
|
], |
|
"message": "Please provide a summary.", |
|
"model": model, |
|
"connectors": [{"id": "web-search"}] |
|
} |
|
|
|
logging.debug("cohere: Submitting request to API endpoint") |
|
print("cohere: Submitting request to API endpoint") |
|
response = requests.post('https://api.cohere.ai/v1/chat', headers=headers, json=data) |
|
response_data = response.json() |
|
logging.debug("API Response Data: %s", response_data) |
|
|
|
if response.status_code == 200: |
|
if 'text' in response_data: |
|
summary = response_data['text'].strip() |
|
logging.debug("cohere: Summarization successful") |
|
print("Summary processed successfully.") |
|
return summary |
|
else: |
|
logging.error("Expected data not found in API response.") |
|
return "Expected data not found in API response." |
|
else: |
|
logging.error(f"cohere: API request failed with status code {response.status_code}: {resposne.text}") |
|
print(f"Failed to process summary, status code {response.status_code}: {response.text}") |
|
return f"cohere: API request failed: {response.text}" |
|
|
|
except Exception as e: |
|
logging.error("cohere: Error in processing: %s", str(e)) |
|
return f"cohere: Error occurred while processing summary with Cohere: {str(e)}" |
|
|
|
|
|
|
|
|
|
def summarize_with_groq(api_key, file_path, model): |
|
try: |
|
logging.debug("groq: Loading JSON data") |
|
with open(file_path, 'r') as file: |
|
segments = json.load(file) |
|
|
|
logging.debug(f"groq: Extracting text from segments file") |
|
text = extract_text_from_segments(segments) |
|
|
|
headers = { |
|
'Authorization': f'Bearer {api_key}', |
|
'Content-Type': 'application/json' |
|
} |
|
|
|
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text." |
|
data = { |
|
"messages": [ |
|
{ |
|
"role": "user", |
|
"content": prompt_text |
|
} |
|
], |
|
"model": model |
|
} |
|
|
|
logging.debug("groq: Submitting request to API endpoint") |
|
print("groq: Submitting request to API endpoint") |
|
response = requests.post('https://api.groq.com/openai/v1/chat/completions', headers=headers, json=data) |
|
|
|
response_data = response.json() |
|
logging.debug("API Response Data: %s", response_data) |
|
|
|
if response.status_code == 200: |
|
if 'choices' in response_data and len(response_data['choices']) > 0: |
|
summary = response_data['choices'][0]['message']['content'].strip() |
|
logging.debug("groq: Summarization successful") |
|
print("Summarization successful.") |
|
return summary |
|
else: |
|
logging.error("Expected data not found in API response.") |
|
return "Expected data not found in API response." |
|
else: |
|
logging.error(f"groq: API request failed with status code {response.status_code}: {response.text}") |
|
return f"groq: API request failed: {response.text}" |
|
|
|
except Exception as e: |
|
logging.error("groq: Error in processing: %s", str(e)) |
|
return f"groq: Error occurred while processing summary with groq: {str(e)}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
def summarize_with_llama(api_url, file_path, token): |
|
try: |
|
logging.debug("llama: Loading JSON data") |
|
with open(file_path, 'r') as file: |
|
segments = json.load(file) |
|
|
|
logging.debug(f"llama: Extracting text from segments file") |
|
text = extract_text_from_segments(segments) |
|
|
|
headers = { |
|
'accept': 'application/json', |
|
'content-type': 'application/json', |
|
} |
|
if len(token)>5: |
|
headers['Authorization'] = f'Bearer {token}' |
|
|
|
|
|
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text." |
|
data = { |
|
"prompt": prompt_text |
|
} |
|
|
|
logging.debug("llama: Submitting request to API endpoint") |
|
print("llama: Submitting request to API endpoint") |
|
response = requests.post(api_url, headers=headers, json=data) |
|
response_data = response.json() |
|
logging.debug("API Response Data: %s", response_data) |
|
|
|
if response.status_code == 200: |
|
|
|
logging.debug(response_data) |
|
summary = response_data['content'].strip() |
|
logging.debug("llama: Summarization successful") |
|
print("Summarization successful.") |
|
return summary |
|
else: |
|
logging.error(f"llama: API request failed with status code {response.status_code}: {response.text}") |
|
return f"llama: API request failed: {response.text}" |
|
|
|
except Exception as e: |
|
logging.error("llama: Error in processing: %s", str(e)) |
|
return f"llama: Error occurred while processing summary with llama: {str(e)}" |
|
|
|
|
|
|
|
|
|
def summarize_with_kobold(api_url, file_path): |
|
try: |
|
logging.debug("kobold: Loading JSON data") |
|
with open(file_path, 'r') as file: |
|
segments = json.load(file) |
|
|
|
logging.debug(f"kobold: Extracting text from segments file") |
|
text = extract_text_from_segments(segments) |
|
|
|
headers = { |
|
'accept': 'application/json', |
|
'content-type': 'application/json', |
|
} |
|
|
|
prompt_text = f"{text} \n\nAs a professional summarizer, create a concise and comprehensive summary of the above text." |
|
logging.debug(prompt_text) |
|
|
|
data = { |
|
"max_context_length": 8096, |
|
"max_length": 4096, |
|
"prompt": prompt_text, |
|
} |
|
|
|
logging.debug("kobold: Submitting request to API endpoint") |
|
print("kobold: Submitting request to API endpoint") |
|
response = requests.post(api_url, headers=headers, json=data) |
|
response_data = response.json() |
|
logging.debug("kobold: API Response Data: %s", response_data) |
|
|
|
if response.status_code == 200: |
|
if 'results' in response_data and len(response_data['results']) > 0: |
|
summary = response_data['results'][0]['text'].strip() |
|
logging.debug("kobold: Summarization successful") |
|
print("Summarization successful.") |
|
return summary |
|
else: |
|
logging.error("Expected data not found in API response.") |
|
return "Expected data not found in API response." |
|
else: |
|
logging.error(f"kobold: API request failed with status code {response.status_code}: {response.text}") |
|
return f"kobold: API request failed: {response.text}" |
|
|
|
except Exception as e: |
|
logging.error("kobold: Error in processing: %s", str(e)) |
|
return f"kobold: Error occurred while processing summary with kobold: {str(e)}" |
|
|
|
|
|
|
|
|
|
def summarize_with_oobabooga(api_url, file_path): |
|
try: |
|
logging.debug("ooba: Loading JSON data") |
|
with open(file_path, 'r') as file: |
|
segments = json.load(file) |
|
|
|
logging.debug(f"ooba: Extracting text from segments file\n\n\n") |
|
text = extract_text_from_segments(segments) |
|
logging.debug(f"ooba: Finished extracting text from segments file") |
|
|
|
headers = { |
|
'accept': 'application/json', |
|
'content-type': 'application/json', |
|
} |
|
|
|
prompt_text = "I like to eat cake and bake cakes. I am a baker. I work in a french bakery baking cakes. It is a fun job. I have been baking cakes for ten years. I also bake lots of other baked goods, but cakes are my favorite." |
|
|
|
prompt_text += "\n\nAs a professional summarizer, create a concise and comprehensive summary of the provided text." |
|
|
|
data = { |
|
"mode": "chat", |
|
"character": "Example", |
|
"messages": [{"role": "user", "content": prompt_text}] |
|
} |
|
|
|
logging.debug("ooba: Submitting request to API endpoint") |
|
print("ooba: Submitting request to API endpoint") |
|
response = requests.post(api_url, headers=headers, json=data, verify=False) |
|
logging.debug("ooba: API Response Data: %s", response) |
|
|
|
if response.status_code == 200: |
|
response_data = response.json() |
|
summary = response.json()['choices'][0]['message']['content'] |
|
logging.debug("ooba: Summarization successful") |
|
print("Summarization successful.") |
|
return summary |
|
else: |
|
logging.error(f"oobabooga: API request failed with status code {response.status_code}: {response.text}") |
|
return f"ooba: API request failed with status code {response.status_code}: {response.text}" |
|
|
|
except Exception as e: |
|
logging.error("ooba: Error in processing: %s", str(e)) |
|
return f"ooba: Error occurred while processing summary with oobabooga: {str(e)}" |
|
|
|
|
|
|
|
def save_summary_to_file(summary, file_path): |
|
summary_file_path = file_path.replace('.segments.json', '_summary.txt') |
|
logging.debug("Opening summary file for writing, *segments.json with *_summary.txt") |
|
with open(summary_file_path, 'w') as file: |
|
file.write(summary) |
|
logging.info(f"Summary saved to file: {summary_file_path}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def summarize_with_huggingface(api_key, file_path): |
|
logging.debug(f"huggingface: Summarization process starting...") |
|
try: |
|
logging.debug("huggingface: Loading json data for summarization") |
|
with open(file_path, 'r') as file: |
|
segments = json.load(file) |
|
|
|
logging.debug("huggingface: Extracting text from the segments") |
|
text = ' '.join([segment['text'] for segment in segments]) |
|
|
|
api_key = os.environ.get('HF_TOKEN') |
|
headers = { |
|
"Authorization": f"Bearer {api_key}" |
|
} |
|
model = "microsoft/Phi-3-mini-128k-instruct" |
|
API_URL = f"https://api-inference.huggingface.co/models/{model}" |
|
data = { |
|
"inputs": text, |
|
"parameters": {"max_length": 512, "min_length": 100} |
|
} |
|
|
|
logging.debug("huggingface: Submitting request...") |
|
response = requests.post(API_URL, headers=headers, json=data) |
|
|
|
if response.status_code == 200: |
|
summary = response.json()[0]['summary_text'] |
|
logging.debug("huggingface: Summarization successful") |
|
print("Summarization successful.") |
|
return summary |
|
else: |
|
logging.error(f"huggingface: Summarization failed with status code {response.status_code}: {response.text}") |
|
return f"Failed to process summary, status code {response.status_code}: {response.text}" |
|
except Exception as e: |
|
logging.error("huggingface: Error in processing: %s", str(e)) |
|
print(f"Error occurred while processing summary with huggingface: {str(e)}") |
|
return None |
|
|
|
|
|
|
|
def same_auth(username, password): |
|
return username == password |
|
|
|
|
|
|
|
def launch_ui(demo_mode=False): |
|
def process_transcription(json_data): |
|
if json_data: |
|
return "\n".join([item["text"] for item in json_data]) |
|
else: |
|
return "" |
|
|
|
inputs = [ |
|
gr.components.Textbox(label="URL"), |
|
gr.components.Number(value=2, label="Number of Speakers"), |
|
gr.components.Dropdown(choices=whisper_models, value="small.en", label="Whisper Model"), |
|
gr.components.Number(value=0, label="Offset") |
|
] |
|
|
|
if not demo_mode: |
|
inputs.extend([ |
|
gr.components.Dropdown(choices=["huggingface", "openai", "anthropic", "cohere", "groq", "llama", "kobold", "ooba"], value="anthropic", label="API Name"), |
|
gr.components.Textbox(label="API Key"), |
|
gr.components.Checkbox(value=False, label="VAD Filter"), |
|
gr.components.Checkbox(value=False, label="Download Video") |
|
]) |
|
|
|
iface = gr.Interface( |
|
fn=lambda *args: process_url(*args, demo_mode=demo_mode), |
|
inputs=inputs, |
|
outputs=[ |
|
gr.components.Textbox(label="Transcription", value=lambda: "", max_lines=10), |
|
gr.components.Textbox(label="Summary"), |
|
gr.components.File(label="Download Transcription as JSON"), |
|
gr.components.File(label="Download Summary as text", visible=lambda summary_file_path: summary_file_path is not None) |
|
], |
|
title="Video Transcription and Summarization", |
|
description="Submit a video URL for transcription and summarization.", |
|
allow_flagging="never" |
|
) |
|
|
|
iface.launch(share=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(input_path, api_name=None, api_key=None, num_speakers=2, whisper_model="small.en", offset=0, vad_filter=False, download_video_flag=False): |
|
if input_path is None and args.user_interface: |
|
return [] |
|
start_time = time.monotonic() |
|
paths = [] |
|
if os.path.isfile(input_path) and input_path.endswith('.txt'): |
|
logging.debug("MAIN: User passed in a text file, processing text file...") |
|
paths = read_paths_from_file(input_path) |
|
elif os.path.exists(input_path): |
|
logging.debug("MAIN: Local file path detected") |
|
paths = [input_path] |
|
elif (info_dict := get_youtube(input_path)) and 'entries' in info_dict: |
|
logging.debug("MAIN: YouTube playlist detected") |
|
print("\n\nSorry, but playlists aren't currently supported. You can run the following command to generate a text file that you can then pass into this script though! (It may not work... playlist support seems spotty)" + """\n\n\tpython Get_Playlist_URLs.py <Youtube Playlist URL>\n\n\tThen,\n\n\tpython diarizer.py <playlist text file name>\n\n""") |
|
return |
|
else: |
|
paths = [input_path] |
|
results = [] |
|
|
|
for path in paths: |
|
try: |
|
if path.startswith('http'): |
|
logging.debug("MAIN: URL Detected") |
|
info_dict = get_youtube(path) |
|
if info_dict: |
|
logging.debug("MAIN: Creating path for video file...") |
|
download_path = create_download_directory(info_dict['title']) |
|
logging.debug("MAIN: Path created successfully") |
|
logging.debug("MAIN: Downloading video from yt_dlp...") |
|
video_path = download_video(path, download_path, info_dict, download_video_flag) |
|
logging.debug("MAIN: Video downloaded successfully") |
|
logging.debug("MAIN: Converting video file to WAV...") |
|
audio_file = convert_to_wav(video_path, offset) |
|
logging.debug("MAIN: Audio file converted succesfully") |
|
else: |
|
if os.path.exists(path): |
|
logging.debug("MAIN: Local file path detected") |
|
download_path, info_dict, audio_file = process_local_file(path) |
|
else: |
|
logging.error(f"File does not exist: {path}") |
|
continue |
|
|
|
if info_dict: |
|
logging.debug("MAIN: Creating transcription file from WAV") |
|
segments = speech_to_text(audio_file, whisper_model=whisper_model, vad_filter=vad_filter) |
|
transcription_result = { |
|
'video_path': path, |
|
'audio_file': audio_file, |
|
'transcription': segments |
|
} |
|
results.append(transcription_result) |
|
logging.info(f"Transcription complete: {audio_file}") |
|
|
|
|
|
if api_name and api_key: |
|
logging.debug(f"MAIN: Summarization being performed by {api_name}") |
|
json_file_path = audio_file.replace('.wav', '.segments.json') |
|
if api_name.lower() == 'openai': |
|
api_key = openai_api_key |
|
try: |
|
logging.debug(f"MAIN: trying to summarize with openAI") |
|
summary = summarize_with_openai(api_key, json_file_path, openai_model) |
|
except requests.exceptions.ConnectionError: |
|
r.status_code = "Connection: " |
|
elif api_name.lower() == 'anthropic': |
|
api_key = anthropic_api_key |
|
try: |
|
logging.debug(f"MAIN: Trying to summarize with anthropic") |
|
summary = summarize_with_claude(api_key, json_file_path, anthropic_model) |
|
except requests.exceptions.ConnectionError: |
|
r.status_code = "Connection: " |
|
elif api_name.lower() == 'cohere': |
|
api_key = cohere_api_key |
|
try: |
|
logging.debug(f"MAIN: Trying to summarize with cohere") |
|
summary = summarize_with_cohere(api_key, json_file_path, cohere_model) |
|
except requests.exceptions.ConnectionError: |
|
r.status_code = "Connection: " |
|
elif api_name.lower() == 'groq': |
|
api_key = groq_api_key |
|
try: |
|
logging.debug(f"MAIN: Trying to summarize with Groq") |
|
summary = summarize_with_groq(api_key, json_file_path, groq_model) |
|
except requests.exceptions.ConnectionError: |
|
r.status_code = "Connection: " |
|
elif api_name.lower() == 'llama': |
|
token = llama_api_key |
|
llama_ip = llama_api_IP |
|
try: |
|
logging.debug(f"MAIN: Trying to summarize with Llama.cpp") |
|
summary = summarize_with_llama(llama_ip, json_file_path, token) |
|
except requests.exceptions.ConnectionError: |
|
r.status_code = "Connection: " |
|
elif api_name.lower() == 'kobold': |
|
token = kobold_api_key |
|
kobold_ip = kobold_api_IP |
|
try: |
|
logging.debug(f"MAIN: Trying to summarize with kobold.cpp") |
|
summary = summarize_with_kobold(kobold_ip, json_file_path) |
|
except requests.exceptions.ConnectionError: |
|
r.status_code = "Connection: " |
|
elif api_name.lower() == 'ooba': |
|
token = ooba_api_key |
|
ooba_ip = ooba_api_IP |
|
try: |
|
logging.debug(f"MAIN: Trying to summarize with oobabooga") |
|
summary = summarize_with_oobabooga(ooba_ip, json_file_path) |
|
except requests.exceptions.ConnectionError: |
|
r.status_code = "Connection: " |
|
if api_name.lower() == 'huggingface': |
|
api_key = huggingface_api_key |
|
try: |
|
logging.debug(f"MAIN: Trying to summarize with huggingface") |
|
summarize_with_huggingface(api_key, json_file_path) |
|
except requests.exceptions.ConnectionError: |
|
r.status_code = "Connection: " |
|
|
|
else: |
|
logging.warning(f"Unsupported API: {api_name}") |
|
summary = None |
|
|
|
if summary: |
|
transcription_result['summary'] = summary |
|
logging.info(f"Summary generated using {api_name} API") |
|
save_summary_to_file(summary, json_file_path) |
|
else: |
|
logging.warning(f"Failed to generate summary using {api_name} API") |
|
else: |
|
logging.info("No API specified. Summarization will not be performed") |
|
except Exception as e: |
|
logging.error(f"Error processing path: {path}") |
|
logging.error(str(e)) |
|
end_time = time.monotonic() |
|
|
|
|
|
return results |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description='Transcribe and summarize videos.') |
|
parser.add_argument('input_path', type=str, help='Path or URL of the video', nargs='?') |
|
parser.add_argument('-v','--video', action='store_true', help='Download the video instead of just the audio') |
|
parser.add_argument('-api', '--api_name', type=str, help='API name for summarization (optional)') |
|
parser.add_argument('-key', '--api_key', type=str, help='API key for summarization (optional)') |
|
parser.add_argument('-ns', '--num_speakers', type=int, default=2, help='Number of speakers (default: 2)') |
|
parser.add_argument('-wm', '--whisper_model', type=str, default='small.en', help='Whisper model (default: small.en)') |
|
parser.add_argument('-off', '--offset', type=int, default=0, help='Offset in seconds (default: 0)') |
|
parser.add_argument('-vad', '--vad_filter', action='store_true', help='Enable VAD filter') |
|
parser.add_argument('-log', '--log_level', type=str, default='INFO', choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Log level (default: INFO)') |
|
parser.add_argument('-ui', '--user_interface', action='store_true', help='Launch the Gradio user interface') |
|
parser.add_argument('-demo', '--demo_mode', action='store_true', help='Enable demo mode') |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
args.user_interface = True |
|
if args.user_interface: |
|
launch_ui(demo_mode=args.demo_mode) |
|
else: |
|
if not args.input_path: |
|
parser.print_help() |
|
sys.exit(1) |
|
|
|
logging.basicConfig(level=getattr(logging, args.log_level), format='%(asctime)s - %(levelname)s - %(message)s') |
|
|
|
logging.info('Starting the transcription and summarization process.') |
|
logging.info(f'Input path: {args.input_path}') |
|
logging.info(f'API Name: {args.api_name}') |
|
logging.debug(f'API Key: {args.api_key}') |
|
logging.info(f'Number of speakers: {args.num_speakers}') |
|
logging.info(f'Whisper model: {args.whisper_model}') |
|
logging.info(f'Offset: {args.offset}') |
|
logging.info(f'VAD filter: {args.vad_filter}') |
|
logging.info(f'Log Level: {args.log_level}') |
|
|
|
if args.api_name and args.api_key: |
|
logging.info(f'API: {args.api_name}') |
|
logging.info('Summarization will be performed.') |
|
else: |
|
logging.info('No API specified. Summarization will not be performed.') |
|
|
|
logging.debug("Platform check being performed...") |
|
platform_check() |
|
logging.debug("CUDA check being performed...") |
|
cuda_check() |
|
logging.debug("ffmpeg check being performed...") |
|
check_ffmpeg() |
|
|
|
try: |
|
results = main(args.input_path, api_name=args.api_name, api_key=args.api_key, num_speakers=args.num_speakers, whisper_model=args.whisper_model, offset=args.offset, vad_filter=args.vad_filter, download_video_flag=args.video) |
|
logging.info('Transcription process completed.') |
|
except Exception as e: |
|
logging.error('An error occurred during the transcription process.') |
|
logging.error(str(e)) |
|
sys.exit(1) |
|
|
|
|