text-to-3d / gradio_app.py
jbilcke-hf's picture
jbilcke-hf HF staff
Update gradio_app.py
af1d9cb verified
raw
history blame
8.25 kB
import os
import tempfile
from typing import Any
import torch
import numpy as np
from PIL import Image
import gradio as gr
import trimesh
from transparent_background import Remover
from diffusers import DiffusionPipeline
# Import and setup SPAR3D
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
import spar3d.utils as spar3d_utils
from spar3d.system import SPAR3D
# Constants
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Initialize models
device = spar3d_utils.get_device()
bg_remover = Remover()
spar3d_model = SPAR3D.from_pretrained(
"stabilityai/stable-point-aware-3d",
config_name="config.yaml",
weight_name="model.safetensors"
).eval().to(device)
# Initialize FLUX model
dtype = torch.bfloat16
flux_pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
# Initialize camera parameters
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
COND_FOVY, COND_HEIGHT, COND_WIDTH
)
def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image:
"""Create an RGBA image from RGB image and optional mask."""
rgba_image = rgb_image.convert('RGBA')
if mask is not None:
# Ensure mask is 2D before converting to alpha
if len(mask.shape) > 2:
mask = mask.squeeze()
alpha = Image.fromarray((mask * 255).astype(np.uint8))
rgba_image.putalpha(alpha)
return rgba_image
def create_batch(input_image: Image.Image) -> dict[str, Any]:
"""Prepare image batch for model input."""
# Resize and convert input image to numpy array
resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT))
img_array = np.array(resized_image).astype(np.float32) / 255.0
# Extract RGB and alpha channels
if img_array.shape[-1] == 4: # RGBA
rgb = img_array[..., :3]
mask = img_array[..., 3:4]
else: # RGB
rgb = img_array
mask = np.ones((*img_array.shape[:2], 1), dtype=np.float32)
# Convert to tensors while keeping channel-last format
rgb = torch.from_numpy(rgb).float() # [H, W, 3]
mask = torch.from_numpy(mask).float() # [H, W, 1]
# Create background blend (match channel-last format)
bg_tensor = torch.tensor(BACKGROUND_COLOR).view(1, 1, 3) # [1, 1, 3]
# Blend RGB with background using mask (all in channel-last format)
rgb_cond = torch.lerp(bg_tensor, rgb, mask) # [H, W, 3]
# Move channels to correct dimension and add batch dimension
# Important: For SPAR3D image tokenizer, we need [B, H, W, C] format
rgb_cond = rgb_cond.unsqueeze(0) # [1, H, W, 3]
mask = mask.unsqueeze(0) # [1, H, W, 1]
# Create the batch dictionary
batch = {
"rgb_cond": rgb_cond, # [1, H, W, 3]
"mask_cond": mask, # [1, H, W, 1]
"c2w_cond": c2w_cond.unsqueeze(0), # [1, 4, 4]
"intrinsic_cond": intrinsic.unsqueeze(0), # [1, 3, 3]
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), # [1, 3, 3]
}
for k, v in batch.items():
print(f"[debug] {k} final shape:", v.shape)
return batch
def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
"""Process batch through model and generate point cloud."""
batch_size = batch["rgb_cond"].shape[0]
assert batch_size == 1, f"Expected batch size 1, got {batch_size}"
# Generate point cloud tokens
try:
cond_tokens = system.forward_pdiff_cond(batch)
except Exception as e:
print("\n[ERROR] Failed in forward_pdiff_cond:")
print(e)
print("\nInput tensor properties:")
print("rgb_cond dtype:", batch["rgb_cond"].dtype)
print("rgb_cond device:", batch["rgb_cond"].device)
print("rgb_cond requires_grad:", batch["rgb_cond"].requires_grad)
raise
# Sample points
sample_iter = system.sampler.sample_batch_progressive(
batch_size,
cond_tokens,
guidance_scale=guidance_scale,
device=device
)
# Get final samples
for x in sample_iter:
samples = x["xstart"]
pc_cond = samples.permute(0, 2, 1).float()
# Normalize point cloud
pc_cond = spar3d_utils.normalize_pc_bbox(pc_cond)
# Subsample to 512 points
pc_cond = pc_cond[:, torch.randperm(pc_cond.shape[1])[:512]]
return pc_cond
def generate_and_process_3d(prompt: str) -> tuple[str | None, Image.Image | None]:
"""Generate image from prompt and convert to 3D model."""
width: int = 1024
height: int = 1024
# Generate random seed
seed = np.random.randint(0, np.iinfo(np.int32).max)
try:
# Set random seeds
torch.manual_seed(seed)
np.random.seed(seed)
# Generate image using FLUX
generator = torch.Generator(device=device).manual_seed(seed)
generated_image = flux_pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=4,
generator=generator,
guidance_scale=0.0
).images[0]
rgb_image = generated_image.convert('RGB')
# bg_remover returns a PIL Image already, no need to convert
no_bg_image = bg_remover.process(rgb_image)
print(f"[debug] no_bg_image type: {type(no_bg_image)}, mode: {no_bg_image.mode}")
# Convert to RGBA if not already
rgba_image = no_bg_image.convert('RGBA')
print(f"[debug] rgba_image mode: {rgba_image.mode}")
processed_image = spar3d_utils.foreground_crop(
rgba_image,
crop_ratio=1.3,
newsize=(COND_WIDTH, COND_HEIGHT),
no_crop=False
)
# Show the processed image alpha channel for debugging
alpha = np.array(processed_image)[:, :, 3]
print(f"[debug] Alpha channel stats - min: {alpha.min()}, max: {alpha.max()}, unique: {np.unique(alpha)}")
# Prepare batch for processing
batch = create_batch(processed_image)
batch = {k: v.to(device) for k, v in batch.items()}
# Generate point cloud
pc_cond = forward_model(
batch,
spar3d_model,
guidance_scale=3.0,
seed=seed,
device=device
)
batch["pc_cond"] = pc_cond
# Generate mesh
with torch.no_grad():
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
trimesh_mesh, _ = spar3d_model.generate_mesh(
batch,
1024, # texture_resolution
remesh="none",
vertex_count=-1,
estimate_illumination=True
)
trimesh_mesh = trimesh_mesh[0]
# Export to GLB
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, 'output.glb')
trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
return output_path
except Exception as e:
print(f"Error during generation: {str(e)}")
import traceback
traceback.print_exc()
return None
# Create Gradio app using Blocks
with gr.Blocks() as demo:
gr.Markdown("# Text to 3D")
gr.Markdown("This space is base on Stable Point-Awaire 3D by Stability AI.")
with gr.Row():
prompt_input = gr.Text(
label="Enter your prompt",
placeholder="eg. isometric 3D game castle"
)
with gr.Row():
generate_btn = gr.Button("Generate", variant="primary")
with gr.Row():
model_output = gr.Model3D(
label="Generated .GLB model",
clear_color=[0.0, 0.0, 0.0, 0.0],
)
# Event handler
generate_btn.click(
fn=generate_and_process_3d,
inputs=[prompt_input],
outputs=[model_output],
api_name="generate"
)
if __name__ == "__main__":
demo.queue().launch()