Spaces:
Running
on
L40S
Running
on
L40S
File size: 8,313 Bytes
38dbec8 eecf990 38dbec8 eecf990 38dbec8 1c05005 38dbec8 eecf990 a399d55 e2ccc8a 38dbec8 eecf990 e2ccc8a 38dbec8 eecf990 e2ccc8a eecf990 1c05005 e2ccc8a eecf990 38dbec8 1c05005 eecf990 38dbec8 aec7186 c882a68 aec7186 03dc078 daf9fe6 c882a68 2728300 0471bc8 03dc078 2728300 4b4ce8a 9e70cab 0471bc8 4b4ce8a 0471bc8 4b4ce8a 0471bc8 4b4ce8a 2728300 4b4ce8a c882a68 4b4ce8a c882a68 0471bc8 c882a68 eecf990 751171e 0471bc8 751171e 4b4ce8a 751171e 4b4ce8a 751171e 0471bc8 751171e 0471bc8 751171e 0471bc8 751171e af1d9cb 1c05005 b0a67b8 af1d9cb b0a67b8 eecf990 751171e 1c05005 e973397 1c05005 daf9fe6 3b58a26 aec7186 3b58a26 aec7186 3b58a26 eecf990 daf9fe6 e973397 1c05005 38dbec8 eecf990 38dbec8 dc16672 38dbec8 751171e daf9fe6 eecf990 751171e eecf990 e973397 1c05005 eecf990 9babed2 eecf990 287be50 eecf990 e973397 f779fbc e973397 eecf990 0471bc8 eecf990 daf9fe6 751171e 0471bc8 af1d9cb 6599110 af1d9cb 1c05005 6599110 1c05005 af1d9cb a6bc9a4 0471bc8 af1d9cb eecf990 e973397 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import os
import tempfile
from typing import Any
import torch
import numpy as np
from PIL import Image
import gradio as gr
import trimesh
from transparent_background import Remover
from diffusers import DiffusionPipeline
# Import and setup SPAR3D
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
import spar3d.utils as spar3d_utils
from spar3d.system import SPAR3D
# Constants
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Initialize models
device = spar3d_utils.get_device()
bg_remover = Remover()
spar3d_model = SPAR3D.from_pretrained(
"stabilityai/stable-point-aware-3d",
config_name="config.yaml",
weight_name="model.safetensors"
).eval().to(device)
# Initialize FLUX model
dtype = torch.bfloat16
flux_pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
# Initialize camera parameters
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
COND_FOVY, COND_HEIGHT, COND_WIDTH
)
def create_rgba_image(rgb_image: Image.Image, mask: np.ndarray = None) -> Image.Image:
"""Create an RGBA image from RGB image and optional mask."""
rgba_image = rgb_image.convert('RGBA')
if mask is not None:
# Ensure mask is 2D before converting to alpha
if len(mask.shape) > 2:
mask = mask.squeeze()
alpha = Image.fromarray((mask * 255).astype(np.uint8))
rgba_image.putalpha(alpha)
return rgba_image
def create_batch(input_image: Image.Image) -> dict[str, Any]:
"""Prepare image batch for model input."""
# Resize and convert input image to numpy array
resized_image = input_image.resize((COND_WIDTH, COND_HEIGHT))
img_array = np.array(resized_image).astype(np.float32) / 255.0
# Extract RGB and alpha channels
if img_array.shape[-1] == 4: # RGBA
rgb = img_array[..., :3]
mask = img_array[..., 3:4]
else: # RGB
rgb = img_array
mask = np.ones((*img_array.shape[:2], 1), dtype=np.float32)
# Convert to tensors while keeping channel-last format
rgb = torch.from_numpy(rgb).float() # [H, W, 3]
mask = torch.from_numpy(mask).float() # [H, W, 1]
# Create background blend (match channel-last format)
bg_tensor = torch.tensor(BACKGROUND_COLOR).view(1, 1, 3) # [1, 1, 3]
# Blend RGB with background using mask (all in channel-last format)
rgb_cond = torch.lerp(bg_tensor, rgb, mask) # [H, W, 3]
# Move channels to correct dimension and add batch dimension
# Important: For SPAR3D image tokenizer, we need [B, H, W, C] format
rgb_cond = rgb_cond.unsqueeze(0) # [1, H, W, 3]
mask = mask.unsqueeze(0) # [1, H, W, 1]
# Create the batch dictionary
batch = {
"rgb_cond": rgb_cond, # [1, H, W, 3]
"mask_cond": mask, # [1, H, W, 1]
"c2w_cond": c2w_cond.unsqueeze(0), # [1, 4, 4]
"intrinsic_cond": intrinsic.unsqueeze(0), # [1, 3, 3]
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0), # [1, 3, 3]
}
for k, v in batch.items():
print(f"[debug] {k} final shape:", v.shape)
return batch
def forward_model(batch, system, guidance_scale=3.0, seed=0, device="cuda"):
"""Process batch through model and generate point cloud."""
batch_size = batch["rgb_cond"].shape[0]
assert batch_size == 1, f"Expected batch size 1, got {batch_size}"
# Generate point cloud tokens
try:
cond_tokens = system.forward_pdiff_cond(batch)
except Exception as e:
print("\n[ERROR] Failed in forward_pdiff_cond:")
print(e)
print("\nInput tensor properties:")
print("rgb_cond dtype:", batch["rgb_cond"].dtype)
print("rgb_cond device:", batch["rgb_cond"].device)
print("rgb_cond requires_grad:", batch["rgb_cond"].requires_grad)
raise
# Sample points
sample_iter = system.sampler.sample_batch_progressive(
batch_size,
cond_tokens,
guidance_scale=guidance_scale,
device=device
)
# Get final samples
for x in sample_iter:
samples = x["xstart"]
pc_cond = samples.permute(0, 2, 1).float()
# Normalize point cloud
pc_cond = spar3d_utils.normalize_pc_bbox(pc_cond)
# Subsample to 512 points
pc_cond = pc_cond[:, torch.randperm(pc_cond.shape[1])[:512]]
return pc_cond
def generate_and_process_3d(prompt: str) -> tuple[str | None, Image.Image | None]:
"""Generate image from prompt and convert to 3D model."""
width: int = 1024
height: int = 1024
# Generate random seed
seed = np.random.randint(0, np.iinfo(np.int32).max)
try:
# Set random seeds
torch.manual_seed(seed)
np.random.seed(seed)
# Generate image using FLUX
generator = torch.Generator(device=device).manual_seed(seed)
generated_image = flux_pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=4,
generator=generator,
guidance_scale=0.0
).images[0]
rgb_image = generated_image.convert('RGB')
# bg_remover returns a PIL Image already, no need to convert
no_bg_image = bg_remover.process(rgb_image)
print(f"[debug] no_bg_image type: {type(no_bg_image)}, mode: {no_bg_image.mode}")
# Convert to RGBA if not already
rgba_image = no_bg_image.convert('RGBA')
print(f"[debug] rgba_image mode: {rgba_image.mode}")
processed_image = spar3d_utils.foreground_crop(
rgba_image,
crop_ratio=1.3,
newsize=(COND_WIDTH, COND_HEIGHT),
no_crop=False
)
# Show the processed image alpha channel for debugging
alpha = np.array(processed_image)[:, :, 3]
print(f"[debug] Alpha channel stats - min: {alpha.min()}, max: {alpha.max()}, unique: {np.unique(alpha)}")
# Prepare batch for processing
batch = create_batch(processed_image)
batch = {k: v.to(device) for k, v in batch.items()}
# Generate point cloud
pc_cond = forward_model(
batch,
spar3d_model,
guidance_scale=3.0,
seed=seed,
device=device
)
batch["pc_cond"] = pc_cond
# Generate mesh
with torch.no_grad():
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu', dtype=torch.bfloat16):
trimesh_mesh, _ = spar3d_model.generate_mesh(
batch,
1024, # texture_resolution
remesh="none",
vertex_count=-1,
estimate_illumination=True
)
trimesh_mesh = trimesh_mesh[0]
# Export to GLB
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, 'output.glb')
trimesh_mesh.export(output_path, file_type="glb", include_normals=True)
return output_path
except Exception as e:
print(f"Error during generation: {str(e)}")
import traceback
traceback.print_exc()
return None
# Create Gradio app using Blocks
with gr.Blocks() as demo:
gr.Markdown("# Text to 3D")
gr.Markdown("This space is based on [Stable Point-Aware 3D](https://huggingface.co/spaces/stabilityai/stable-point-aware-3d) by Stability AI.")
with gr.Row():
prompt_input = gr.Text(
label="Enter your prompt",
placeholder="eg. isometric 3D castle"
)
with gr.Row():
generate_btn = gr.Button("Generate", variant="primary")
with gr.Row():
model_output = gr.Model3D(
label="Generated .GLB model",
clear_color=[0.0, 0.0, 0.0, 0.0],
)
# Event handler
generate_btn.click(
fn=generate_and_process_3d,
inputs=[prompt_input],
outputs=[model_output],
api_name="generate"
)
if __name__ == "__main__":
demo.queue().launch() |