jbilcke-hf HF staff commited on
Commit
c98dac5
1 Parent(s): 22944ff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -104
app.py CHANGED
@@ -3,8 +3,32 @@ import torch
3
 
4
  from diffusers import AutoPipelineForInpainting, UNet2DConditionModel
5
  import diffusers
6
- from share_btn import community_icon_html, loading_icon_html, share_js
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
  pipe = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16").to(device)
10
 
@@ -16,7 +40,11 @@ def read_content(file_path: str) -> str:
16
 
17
  return content
18
 
19
- def predict(dict, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"):
 
 
 
 
20
  if negative_prompt == "":
21
  negative_prompt = None
22
  scheduler_class_name = scheduler.split("-")[0]
@@ -30,108 +58,37 @@ def predict(dict, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, s
30
  scheduler = getattr(diffusers, scheduler_class_name)
31
  pipe.scheduler = scheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler", **add_kwargs)
32
 
33
- init_image = dict["image"].convert("RGB").resize((1024, 1024))
34
- mask = dict["mask"].convert("RGB").resize((1024, 1024))
35
 
36
  output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- return output.images[0], gr.update(visible=True)
39
-
40
-
41
- css = '''
42
- .gradio-container{max-width: 1100px !important}
43
- #image_upload{min-height:400px}
44
- #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
45
- #mask_radio .gr-form{background:transparent; border: none}
46
- #word_mask{margin-top: .75em !important}
47
- #word_mask textarea:disabled{opacity: 0.3}
48
- .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
49
- .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
50
- .dark .footer {border-color: #303030}
51
- .dark .footer>p {background: #0b0f19}
52
- .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
53
- #image_upload .touch-none{display: flex}
54
- @keyframes spin {
55
- from {
56
- transform: rotate(0deg);
57
- }
58
- to {
59
- transform: rotate(360deg);
60
- }
61
- }
62
- #share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
63
- div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
64
- #share-btn-container:hover {background-color: #060606}
65
- #share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
66
- #share-btn * {all: unset}
67
- #share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
68
- #share-btn-container .wrap {display: none !important}
69
- #share-btn-container.hidden {display: none!important}
70
- #prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
71
- #run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
72
- border-top-left-radius: 0px;}
73
- #prompt-container{margin-top:-18px;}
74
- #prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
75
- #image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
76
- '''
77
-
78
- image_blocks = gr.Blocks(css=css, elem_id="total-container")
79
- with image_blocks as demo:
80
- gr.HTML(read_content("header.html"))
81
- with gr.Row():
82
- with gr.Column():
83
- image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload",height=400)
84
- with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
85
- with gr.Row():
86
- prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
87
- btn = gr.Button("Inpaint!", elem_id="run_button")
88
-
89
- with gr.Accordion(label="Advanced Settings", open=False):
90
- with gr.Row(mobile_collapse=False, equal_height=True):
91
- guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
92
- steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
93
- strength = gr.Number(value=0.99, minimum=0.01, maximum=1.0, step=0.01, label="strength")
94
- negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
95
- with gr.Row(mobile_collapse=False, equal_height=True):
96
- schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
97
- scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
98
-
99
- with gr.Column():
100
- image_out = gr.Image(label="Output", elem_id="output-img", height=400)
101
- with gr.Group(elem_id="share-btn-container", visible=False) as share_btn_container:
102
- community_icon = gr.HTML(community_icon_html)
103
- loading_icon = gr.HTML(loading_icon_html)
104
- share_button = gr.Button("Share to community", elem_id="share-btn",visible=True)
105
-
106
-
107
- btn.click(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, share_btn_container], api_name='run')
108
- prompt.submit(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, share_btn_container])
109
- share_button.click(None, [], [], _js=share_js)
110
-
111
- gr.Examples(
112
- examples=[
113
- ["./imgs/aaa (8).png"],
114
- ["./imgs/download (1).jpeg"],
115
- ["./imgs/0_oE0mLhfhtS_3Nfm2.png"],
116
- ["./imgs/02_HubertyBlog-1-1024x1024.jpg"],
117
- ["./imgs/jdn_jacques_de_nuce-1024x1024.jpg"],
118
- ["./imgs/c4ca473acde04280d44128ad8ee09e8a.jpg"],
119
- ["./imgs/canam-electric-motorcycles-scaled.jpg"],
120
- ["./imgs/e8717ce80b394d1b9a610d04a1decd3a.jpeg"],
121
- ["./imgs/Nature___Mountains_Big_Mountain_018453_31.jpg"],
122
- ["./imgs/Multible-sharing-room_ccexpress-2-1024x1024.jpeg"],
123
- ],
124
- fn=predict,
125
- inputs=[image],
126
- cache_examples=False,
127
- )
128
- gr.HTML(
129
- """
130
- <div class="footer">
131
- <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
132
- </p>
133
- </div>
134
- """
135
- )
136
-
137
- image_blocks.queue(max_size=25,api_open=False).launch(show_api=False)
 
3
 
4
  from diffusers import AutoPipelineForInpainting, UNet2DConditionModel
5
  import diffusers
 
6
 
7
+ import os
8
+ from io import BytesIO
9
+ import base64
10
+ import re
11
+
12
+ SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')
13
+
14
+ # Regex pattern to match data URI scheme
15
+ data_uri_pattern = re.compile(r'data:image/(png|jpeg|jpg|webp);base64,')
16
+
17
+ def readb64(b64):
18
+ # Remove any data URI scheme prefix with regex
19
+ b64 = data_uri_pattern.sub("", b64)
20
+ # Decode and open the image with PIL
21
+ img = Image.open(BytesIO(base64.b64decode(b64)))
22
+ return img
23
+
24
+ # convert from PIL to base64
25
+ def writeb64(image):
26
+ buffered = BytesIO()
27
+ image.save(buffered, format="PNG")
28
+ b64image = base64.b64encode(buffered.getvalue())
29
+ b64image_str = b64image.decode("utf-8")
30
+ return b64image_str
31
+
32
  device = "cuda" if torch.cuda.is_available() else "cpu"
33
  pipe = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16").to(device)
34
 
 
40
 
41
  return content
42
 
43
+ def predict(secret_token, input_image_b64, input_mask_b64, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"):
44
+ if secret_token != SECRET_TOKEN:
45
+ raise gr.Error(
46
+ f'Invalid secret token. Please fork the original space if you want to use it for yourself.')
47
+
48
  if negative_prompt == "":
49
  negative_prompt = None
50
  scheduler_class_name = scheduler.split("-")[0]
 
58
  scheduler = getattr(diffusers, scheduler_class_name)
59
  pipe.scheduler = scheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler", **add_kwargs)
60
 
61
+ init_image = readb64(input_image_b64).convert("RGB").resize((1024, 1024))
62
+ mask = readb64(input_mask_b64).convert("RGB").resize((1024, 1024))
63
 
64
  output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
65
+
66
+
67
+ return writeb64(output.images[0])
68
+
69
+
70
+
71
+ inpainter = gr.Blocks()
72
+ with inpainter as demo:
73
+ gr.HTML("""
74
+ <div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;">
75
+ <div style="text-align: center; color: black;">
76
+ <p style="color: black;">This space is a REST API to programmatically inpaint an image.</p>
77
+ <p style="color: black;">Interested in using it? Please use the <a href="https://huggingface.co/spaces/diffusers/stable-diffusion-xl-inpainting" target="_blank">original space</a>, thank you!</p>
78
+ </div>
79
+ </div>""")
80
 
81
+ secret_token = gr.Textbox()
82
+ input_image_b64 = gr.Textbox()
83
+ input_mask_b64 = gr.Textbox()
84
+ prompt = gr.Textbox()
85
+ guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
86
+ steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
87
+ strength = gr.Number(value=0.99, minimum=0.01, maximum=1.0, step=0.01, label="strength")
88
+ negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
89
+ schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
90
+ scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
91
+ output_image_b64 = gr.Textbox()
92
+ btn.click(fn=predict, inputs=[secret_token, input_image_b64, input_mask_b64, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=output_image_b64)
93
+
94
+ inpainter.queue(max_size=25).launch()