File size: 4,303 Bytes
b13990e 65fd06d a2021c5 504fb8a 65fd06d 8a2a8c7 65fd06d 7f11b82 65fd06d 8a2a8c7 65fd06d 8a2a8c7 b13990e 8a2a8c7 65fd06d b13990e 88cc598 0810225 88cc598 65fd06d 504fb8a 7db3ca3 504fb8a 47f7759 65fd06d 108abb9 895e905 611d1ae 9aa1c3d 895e905 108abb9 47f7759 108abb9 ec93dcb 108abb9 65fd06d 108abb9 b13990e 108abb9 b13990e 108abb9 b13990e 108abb9 b13990e 65fd06d 7db3ca3 7f11b82 65fd06d 8790f79 504fb8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
#!/usr/bin/env python
import os
import gradio as gr
import numpy as np
import PIL
import base64
import io
import torch
# SSD-1B
#from diffusers import LCMScheduler, AutoPipelineForText2Image
# SDXL
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024'))
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')
#device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
if torch.cuda.is_available():
#pipe = AutoPipelineForText2Image.from_pretrained("segmind/SSD-1B", torch_dtype=torch.float16, variant="fp16")
#pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
#pipe.to("cuda")
# load and fuse
#pipe.load_lora_weights("latent-consistency/lcm-lora-ssd-1b")
#pipe.fuse_lora()
unet = UNet2DConditionModel.from_pretrained("latent-consistency/lcm-sdxl", torch_dtype=torch.float16, variant="fp16")
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", unet=unet, torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to('cuda')
else:
pipe = None
def generate(prompt: str,
negative_prompt: str = '',
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 0.0,
num_inference_steps: int = 4,
secret_token: str = '') -> PIL.Image.Image:
if secret_token != SECRET_TOKEN:
raise gr.Error(
f'Invalid secret token. Please fork the original space if you want to use it for yourself.')
generator = torch.Generator().manual_seed(seed)
image = pipe(prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type='pil').images[0]
return image
with gr.Blocks() as demo:
gr.HTML("""
<div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;">
<div style="text-align: center; color: black;">
<p style="color: black;">This space is a REST API to programmatically generate images using LCM LoRA SSD-1B.</p>
<p style="color: black;">It is not meant to be directly used through a user interface, but using code and an access key.</p>
</div>
</div>""")
secret_token = gr.Text(
label='Secret Token',
max_lines=1,
placeholder='Enter your secret token',
)
prompt = gr.Text(
label='Prompt',
show_label=False,
max_lines=1,
placeholder='Enter your prompt',
container=False,
)
result = gr.Image(label='Result', show_label=False)
negative_prompt = gr.Text(
label='Negative prompt',
max_lines=1,
placeholder='Enter a negative prompt',
visible=True,
)
seed = gr.Slider(label='Seed',
minimum=0,
maximum=MAX_SEED,
step=1,
value=0)
width = gr.Slider(
label='Width',
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label='Height',
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
guidance_scale = gr.Slider(
label='Guidance scale',
minimum=0,
maximum=2,
step=0.1,
value=0.0)
num_inference_steps = gr.Slider(
label='Number of inference steps',
minimum=1,
maximum=8,
step=1,
value=4)
inputs = [
prompt,
negative_prompt,
seed,
width,
height,
guidance_scale,
num_inference_steps,
secret_token,
]
prompt.submit(
fn=generate,
inputs=inputs,
outputs=result,
api_name='run',
)
demo.queue(max_size=32).launch() |