|
import gradio as gr |
|
import os |
|
import sys |
|
import argparse |
|
import random |
|
import time |
|
from omegaconf import OmegaConf |
|
import torch |
|
import torchvision |
|
from pytorch_lightning import seed_everything |
|
from huggingface_hub import hf_hub_download |
|
from einops import repeat |
|
import torchvision.transforms as transforms |
|
from utils.utils import instantiate_from_config |
|
sys.path.insert(0, "scripts/evaluation") |
|
from funcs import ( |
|
batch_ddim_sampling, |
|
load_model_checkpoint, |
|
get_latent_z, |
|
save_videos |
|
) |
|
|
|
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret') |
|
|
|
def download_model(): |
|
REPO_ID = 'Doubiiu/DynamiCrafter_1024' |
|
filename_list = ['model.ckpt'] |
|
if not os.path.exists('./checkpoints/dynamicrafter_1024_v1/'): |
|
os.makedirs('./checkpoints/dynamicrafter_1024_v1/') |
|
for filename in filename_list: |
|
local_file = os.path.join('./checkpoints/dynamicrafter_1024_v1/', filename) |
|
if not os.path.exists(local_file): |
|
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_1024_v1/', force_download=True) |
|
|
|
|
|
def infer(secret_token, image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123): |
|
if secret_token != SECRET_TOKEN: |
|
raise gr.Error( |
|
f'Invalid secret token. Please fork the original space if you want to use it for yourself.') |
|
|
|
|
|
resolution = (576, 1024) |
|
download_model() |
|
ckpt_path='checkpoints/dynamicrafter_1024_v1/model.ckpt' |
|
config_file='configs/inference_1024_v1.0.yaml' |
|
config = OmegaConf.load(config_file) |
|
model_config = config.pop("model", OmegaConf.create()) |
|
model_config['params']['unet_config']['params']['use_checkpoint']=False |
|
model = instantiate_from_config(model_config) |
|
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!" |
|
model = load_model_checkpoint(model, ckpt_path) |
|
model.eval() |
|
model = model.cuda() |
|
save_fps = 8 |
|
|
|
seed_everything(seed) |
|
transform = transforms.Compose([ |
|
transforms.Resize(min(resolution)), |
|
transforms.CenterCrop(resolution), |
|
]) |
|
torch.cuda.empty_cache() |
|
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) |
|
start = time.time() |
|
if steps > 60: |
|
steps = 60 |
|
|
|
batch_size=1 |
|
channels = model.model.diffusion_model.out_channels |
|
frames = model.temporal_length |
|
h, w = resolution[0] // 8, resolution[1] // 8 |
|
noise_shape = [batch_size, channels, frames, h, w] |
|
|
|
|
|
text_emb = model.get_learned_conditioning([prompt]) |
|
|
|
|
|
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device) |
|
img_tensor = (img_tensor / 255. - 0.5) * 2 |
|
|
|
image_tensor_resized = transform(img_tensor) |
|
videos = image_tensor_resized.unsqueeze(0) |
|
|
|
z = get_latent_z(model, videos.unsqueeze(2)) |
|
|
|
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames) |
|
|
|
cond_images = model.embedder(img_tensor.unsqueeze(0)) |
|
img_emb = model.image_proj_model(cond_images) |
|
|
|
imtext_cond = torch.cat([text_emb, img_emb], dim=1) |
|
|
|
fs = torch.tensor([fs], dtype=torch.long, device=model.device) |
|
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]} |
|
|
|
|
|
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale) |
|
|
|
|
|
video_path = './output.mp4' |
|
save_videos(batch_samples, './', filenames=['output'], fps=save_fps) |
|
model = model.cpu() |
|
|
|
|
|
with open(video_path, "rb") as video_file: |
|
video_base64 = base64.b64encode(video_file.read()).decode('utf-8') |
|
|
|
|
|
video_data_uri = 'data:video/mp4;base64,' + video_base64 |
|
|
|
|
|
|
|
os.remove(video_path) |
|
|
|
return video_data_uri |
|
|
|
|
|
|
|
with gr.Blocks() as app: |
|
gr.HTML(""" |
|
<div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;"> |
|
<div style="text-align: center; color: black;"> |
|
<p style="color: black;">This space is a REST API to programmatically generate MP4 videos.</p> |
|
<p style="color: black;">Interested in using it? Look no further than the <a href="https://huggingface.co/spaces/Doubiiu/DynamiCrafter" target="_blank">original space</a>!</p> |
|
</div> |
|
</div>""") |
|
|
|
|
|
secret_token = gr.Text(label='Secret Token', max_lines=1) |
|
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img") |
|
i2v_input_text = gr.Text(label='Prompts') |
|
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123) |
|
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta") |
|
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale") |
|
i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps", label="Sampling steps", value=50) |
|
i2v_motion = gr.Slider(minimum=5, maximum=20, step=1, elem_id="i2v_motion", label="FPS", value=10) |
|
i2v_end_btn = gr.Button("Generate") |
|
|
|
i2v_output_video_base64 = gr.Text() |
|
|
|
i2v_end_btn.click(inputs=[secret_token, i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed], |
|
outputs=[i2v_output_video_base64], |
|
fn = infer |
|
) |
|
|
|
app.queue(max_size=4).launch(show_api=True) |