File size: 11,617 Bytes
f3b1b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import os
import json
from langchain.chains import ConversationChain
from langchain.schema import SystemMessage, HumanMessage, AIMessage
import boto3
from typing import Dict
from langchain_aws.retrievers import AmazonKnowledgeBasesRetriever
from langchain_aws import ChatBedrock


def create_bedrock_client(service_type: str = 'bedrock-runtime'):
    """Create and return a Bedrock client with default credentials"""
    return boto3.client(
        service_name=service_type,
        region_name='eu-west-2',
    )


def initialize_claude_chain(client):
    """Initialize and return a conversation chain with Claude"""
    llm = ChatBedrock(
        model='anthropic.claude-3-sonnet-20240229-v1:0',
        client=client,
        model_kwargs={
            'max_tokens': 1000,
            'temperature': 0.6,
            'top_p': 0.9,
        },
    )
    return llm


def chat_with_claude(conversation: ConversationChain, user_input: str) -> Dict:
    """Send a message to Claude and get its response"""
    try:
        response = conversation.predict(input=user_input)
        return {'status': 'success', 'response': response}
    except Exception as e:
        return {'status': 'error', 'error': str(e)}


def classify_kb_response(llm, response: str) -> list[str]:
    kb_classifer = [
        SystemMessage(
            content="""You are a classifier determining the intent of llm responses.

            The llm can decide to consult 3 databases: ['eur lex', 'austrian law', 'german law']
            Determine the intent and output the relevant classes.
            Examples:
            #1
            <llm indicates eu law intent>
            Output:
            ['eur lex']
            #2
            <llm indicates eu law and austrian law intent>
            Output:
            ['eur lex', 'austrian law']
            #3
            <llm indicates eu law and german law intent>
            Output:
            ['eur lex', 'german law']
            """
        ),
        HumanMessage(content=f'Classify the below context:{response}'),
    ]
    response = llm.invoke(kb_classifer)
    res_str = str(response.content)
    res_parsed = []
    if 'eur lex' in res_str.lower():
        res_parsed.append('eur lex')
    if 'austrian law' in res_str.lower():
        res_parsed.append('austrian law')
    if 'german law' in res_str.lower():
        res_parsed.append('german law')
    return res_parsed


def classify_exception_response(llm, response: str) -> bool:
    kb_classifer = [
        SystemMessage(
            content="""You are a classifier determining the intent of llm responses.

            The llm can decide if the legal case falls upon an exception, and if so
            can consult a database.

            Determine the intent and output the relevant classes.
            Examples:
            #1
            <llm indicates no exceptions seem to apply confidently>
            Output:
            'no exception'
            #2
            <llm indicates there might be some exceptions>
            Output:
            'database lookup'
            """
        ),
        HumanMessage(content=f'Classify the below context:{response}'),
    ]
    response = llm.invoke(kb_classifer)
    res_str = str(response.content)
    return 'database lookup' in res_str.lower()


def retrieve_knowledge_base_docs(
    client,
    knowledge_base_id: str,
    query: str,
    num_res: int = 25,
) -> list:
    retriever = AmazonKnowledgeBasesRetriever(
        client=client,
        knowledge_base_id=knowledge_base_id,
        retrieval_config={
            'vectorSearchConfiguration': {'numberOfResults': num_res}
        },
        min_score_confidence=0.0,
    )
    return retriever.invoke(query)


case1 = """A new member is about to be appointed to the management body of a(n ECB) supervised institution in Austria. The
    prospective member is already a member of the board in three other group companies. The supervisor is concerned the potential board
    member does not have enough time to commit to this new position. Can the ECB as supervisor oppose this appointment? 
"""

case2 = """A shareholder in a German bank did not ask approval to the ECB for the
acquisition of its qualifying holding (10% or more) in the German bank.
What can be the consequences?
"""

case3 = """A request for public access to ECB documents based on Decision ECB/2004/3
(2004/258/EC) aims at getting access to documents containing the proceedings
and the outcome of the deliberations of a Governing Council meeting.
Can the documents be disclosed under the applicable legal framework?
"""

case4 = """In relation to the Corporate sector purchase programme (CSPP):
Is commercial paper an eligible asset under the CSPP? Under what
conditions?
"""


SYSTEM = 'You are a lawyer, giving professional and accurate legal advice. Base your answers on relevant, up todate legal frameworks.'


def run_pipeline(case_text: str | None = None):
    client = create_bedrock_client()
    retrieval_client = create_bedrock_client('bedrock-agent-runtime')
    chat = initialize_claude_chain(client)
    export = {}
    case = ''
    if case_text is None:
        case = case1
    else:
        case = case_text

    human_input = f"""
    <case>{case}</case>

    FOLLOW THE STEP BY STEP PLAN:
    1. Summarize the question
    2. Identify the main actors and their relationships (if applicable) 
    3. Identify who is competent on the legal matter and reference the legal basis
    4. Identify the legal issue based on the inital question. 
    5. Which knowledge bases are most likely to contain relevant information? (Eur lex, austrian law, german law)
    """
    export['human_1'] = human_input
    main_wf_messages = [
        SystemMessage(
            content=SYSTEM,
        ),
        HumanMessage(
            content=human_input,
        ),
    ]
    AUS_KB_ID = 'URGID9GFK8'
    GER_KB_ID = '19H00QAPZG'
    EU_KB_ID = 'ORMULTAIWL'

    response = chat.invoke(main_wf_messages)
    fifth_point = str(response.content).split('5. ')[-1]
    print(response.content)
    export['ai_first_5'] = str(response.content)
    main_wf_messages.append(
        AIMessage(content=str(response.content)),
    )
    print('------')
    print(fifth_point)
    print('------')
    classification = classify_kb_response(chat, fifth_point)
    export['ai_lookup_decision_1'] = classification
    print('CLASS', classification)
    if 'eur lex' in classification:
        eu_res = retrieve_knowledge_base_docs(
            retrieval_client, EU_KB_ID, str(response.content)
        )
        export['eur_lex_lookup'] = [str(r) for r in eu_res]
        main_wf_messages.append(
            HumanMessage(
                content=f'Determine which regulations apply (from eur lex):\n{eu_res}'
            )
        )
        response = chat.invoke(main_wf_messages)
        print(response.content)
        export['ai_eur_lex_eval'] = str(response.content)
        main_wf_messages.append(
            AIMessage(content=str(response.content)),
        )
    if 'austrian law' in classification:
        aus_res = retrieve_knowledge_base_docs(
            retrieval_client,
            AUS_KB_ID,
            f'Determine which regulations apply (from austrian law):\n{case}',
        )
        export['aus_lookup'] = [str(r) for r in aus_res]
        main_wf_messages.append(
            HumanMessage(
                content=f'Determine which regulations apply (from austrian law):\n{aus_res}'
            )
        )
        response = chat.invoke(main_wf_messages)
        print(response.content)
        export['ai_aus_eval'] = str(response.content)
        main_wf_messages.append(
            AIMessage(content=str(response.content)),
        )
    if 'german law' in classification:
        ger_res = retrieve_knowledge_base_docs(
            retrieval_client,
            GER_KB_ID,
            f'Determine which regulations apply (from german law):\n{human_input}',
        )
        export['ger_lookup'] = [str(r) for r in ger_res]
        main_wf_messages.append(
            HumanMessage(
                content=f'Determine which regulations apply (from german law):\n{ger_res}'
            )
        )
        response = chat.invoke(main_wf_messages)
        print(response.content)
        export['ai_ger_eval'] = str(response.content)
        main_wf_messages.append(
            AIMessage(content=str(response.content)),
        )
    # EXCEPTION_PROMPT = """6. Determine if the case falls upon an exception and
    #        retrieve the relevant regulation connected to the exception"""
    # export['human_exception'] = EXCEPTION_PROMPT
    # main_wf_messages.append(
    #    HumanMessage(
    #        content=EXCEPTION_PROMPT,
    #    )
    # )
    # response = chat.invoke(main_wf_messages)
    # print(response.content)
    # export['ai_exception_investigation'] = str(response.content)
    # main_wf_messages.append(
    #    AIMessage(content=str(response.content)),
    # )
    #    is_exception = classify_exception_response(chat, str(response.content))
    #    print('IS EXCEPTION CLASS:', is_exception)
    #    if is_exception:
    #        eu_res = retrieve_knowledge_base_docs(
    #            retrieval_client,
    #            EU_KB_ID,
    #            str(response.content),
    #            10,
    #        )
    #        export['ai_exception_lookup'] = [str(r) for r in eu_res]
    #        main_wf_messages.append(
    #            HumanMessage(
    #                content=f'Determine if the regulations provide a strong legal basis for an exception:\n{eu_res}'
    #            )
    #        )
    #        response = chat.invoke(main_wf_messages)
    #        print(response.content)
    #        export['ai_exception_eval'] = str(response.content)
    #        main_wf_messages.append(
    #            AIMessage(content=str(response.content)),
    #        )
    #
    FINAL_SUMMARY_PROMPT = """6.Based on the actors, the competencies, the relevant legal frameworks
        as mentioned above draft an answer to the FULL original question(s). 
        Mention the legal issue(s), the relevant articles used in both eur lex and national and the
        applicable regime set up, the conditions if applicable, conclusion."""
    export['human_summary'] = FINAL_SUMMARY_PROMPT
    main_wf_messages.append(
        HumanMessage(
            content=FINAL_SUMMARY_PROMPT,
        )
    )
    response = chat.invoke(main_wf_messages)
    print('----------FINAL RESPONSE------------')
    print(response.content)
    export['ai_final_summary'] = str(response.content)
    main_wf_messages.append(
        AIMessage(content=str(response.content)),
    )

    main_wf_messages.append(
        HumanMessage(
            content="""You are a lawyer and you need explain your answer to the question(s). 
            Your colleagues are saying you are wrong on at least one of these aspects: competencies, relevant laws, articles references (missing or hallucination). 
            Draft a complete explanation of your reasoning, mention the legal issue(s), the correct complete relevant articles used in both eur lex and national and the applicable regime set up, the conditions if applicable, conclusions."""
        )
    )

    response = chat.invoke(main_wf_messages)
    print('----------Complementary------------')
    print(response.content)
    export['ai_challange'] = str(response.content)
    return export


if __name__ == '__main__':
    export = run_pipeline()
    print(json.dumps(export, indent=4))
    with open('export.json', 'w') as f:
        json.dump(export, f, indent=4)