jayash391 commited on
Commit
e25ee96
·
verified ·
1 Parent(s): ea05e35

Update sherlock2.py

Browse files
Files changed (1) hide show
  1. sherlock2.py +6 -5
sherlock2.py CHANGED
@@ -1,4 +1,5 @@
1
  import google.generativeai as genai
 
2
  import streamlit as st
3
  from bs4 import BeautifulSoup
4
  import wikipedia
@@ -35,19 +36,19 @@ sherlock_guidelines = """
35
  * Be confident in your deductions but remain open to new information and alternative perspectives.
36
  """
37
 
38
- # Generate embeddings for Sherlock Holmes corpus (models/embedding-001)
39
- embedding_model = genai.EmbeddingModel('models/embedding-001')
40
 
41
  # Function for embedding generation (using models/embedding-001)
42
  def generate_embeddings_from_documents(extracted_text):
43
- """Generates embeddings for a list of extracted text documents using the 'models/embedding-001' model
44
  and the appropriate task type."""
45
  embeddings = []
46
  for text in extracted_text:
47
  try:
48
  # Determine the appropriate task type (e.g., "RETRIEVAL_DOCUMENT" for search/similarity)
49
- task_type = "RETRIEVAL_DOCUMENT"
50
- response = embedding_model.embed_text(text, task_type=task_type)
51
  embeddings.append(response["embedding"])
52
  except Exception as e:
53
  st.error(f"Error generating embeddings: {e}")
 
1
  import google.generativeai as genai
2
+ import google.ai.generativelanguage as glm
3
  import streamlit as st
4
  from bs4 import BeautifulSoup
5
  import wikipedia
 
36
  * Be confident in your deductions but remain open to new information and alternative perspectives.
37
  """
38
 
39
+ # Generate embeddings using the Gemini Embedding API
40
+ embed_model = 'models/embedding-001'
41
 
42
  # Function for embedding generation (using models/embedding-001)
43
  def generate_embeddings_from_documents(extracted_text):
44
+ """Generates embeddings for a list of extracted text documents using the 'models/embedding-001' model
45
  and the appropriate task type."""
46
  embeddings = []
47
  for text in extracted_text:
48
  try:
49
  # Determine the appropriate task type (e.g., "RETRIEVAL_DOCUMENT" for search/similarity)
50
+ task_type = "RETRIEVAL_DOCUMENT"
51
+ response = genai.embed_content(model=embed_model, content=text, task_type=task_type)
52
  embeddings.append(response["embedding"])
53
  except Exception as e:
54
  st.error(f"Error generating embeddings: {e}")