Spaces:
Runtime error
Runtime error
Upload sherlock2.py
Browse files- sherlock2.py +328 -0
sherlock2.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import google.generativeai as genai
|
2 |
+
import streamlit as st
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
import wikipedia
|
5 |
+
import os
|
6 |
+
from googleapiclient.discovery import build
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
import textwrap
|
9 |
+
import PIL
|
10 |
+
import PyPDF2
|
11 |
+
import textract
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
# Configure Gemini API access
|
16 |
+
genai.configure(api_key=os.getenv("GEMINI_API_KEY_PROJECTID"))
|
17 |
+
|
18 |
+
# Load pre-trained Gemini model
|
19 |
+
model = genai.GenerativeModel('models/gemini-1.5-pro')
|
20 |
+
vision_model = genai.GenerativeModel('models/gemini-pro-vision')
|
21 |
+
|
22 |
+
# Define Sherlock Holmes's persona and guidelines
|
23 |
+
sherlock_persona = """
|
24 |
+
You are Sherlock Holmes, the world-renowned consulting detective residing at 221B Baker Street.
|
25 |
+
You possess exceptional deductive reasoning, observation skills, and knowledge in various fields
|
26 |
+
such as forensic science, chemistry, and criminal psychology.
|
27 |
+
You are known for your sharp wit, logical thinking, and ability to solve complex mysteries.
|
28 |
+
"""
|
29 |
+
|
30 |
+
sherlock_guidelines = """
|
31 |
+
* Respond in a manner consistent with Sherlock Holmes's personality, maintaining a formal and articulate tone.
|
32 |
+
* Utilize your extensive knowledge and deductive reasoning skills to analyze case details and form hypotheses.
|
33 |
+
* Employ a keen sense of observation and attention to detail when examining evidence.
|
34 |
+
* Consider various possibilities and avoid jumping to conclusions without sufficient evidence.
|
35 |
+
* Be confident in your deductions but remain open to new information and alternative perspectives.
|
36 |
+
"""
|
37 |
+
|
38 |
+
# Generate embeddings for Sherlock Holmes corpus (models/embedding-001)
|
39 |
+
embedding_model = genai.EmbeddingModel('models/embedding-001')
|
40 |
+
|
41 |
+
# Function for embedding generation (using models/embedding-001)
|
42 |
+
def generate_embeddings_from_documents(extracted_text):
|
43 |
+
"""Generates embeddings for a list of extracted text documents using the 'models/embedding-001' model
|
44 |
+
and the appropriate task type."""
|
45 |
+
embeddings = []
|
46 |
+
for text in extracted_text:
|
47 |
+
try:
|
48 |
+
# Determine the appropriate task type (e.g., "RETRIEVAL_DOCUMENT" for search/similarity)
|
49 |
+
task_type = "RETRIEVAL_DOCUMENT"
|
50 |
+
response = embedding_model.embed_text(text, task_type=task_type)
|
51 |
+
embeddings.append(response["embedding"])
|
52 |
+
except Exception as e:
|
53 |
+
st.error(f"Error generating embeddings: {e}")
|
54 |
+
return embeddings
|
55 |
+
|
56 |
+
|
57 |
+
# Web scraping and Wikipedia search function
|
58 |
+
def search_and_scrape_wikipedia(keywords, max_topics_per_query=3, mining_model='gemini-pro'):
|
59 |
+
"""
|
60 |
+
Searches and scrapes Wikipedia for information relevant to the provided keywords.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
keywords (list): A list of keywords to search for on Wikipedia.
|
64 |
+
max_topics_per_query (int, optional): The maximum number of Wikipedia topics to explore for each query. Defaults to 3.
|
65 |
+
mining_model (str, optional): The name of the generative model to use for extracting relevant information.
|
66 |
+
Defaults to 'gemini-pro'.
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
list: A list of dictionaries, where each dictionary represents a relevant piece of information, with keys:
|
70 |
+
- "topic": The Wikipedia topic title.
|
71 |
+
- "summary": A summary of the relevant information extracted from the topic.
|
72 |
+
- "url": The URL of the Wikipedia page.
|
73 |
+
- "additional_sources": (Optional) A list of additional source URLs extracted from citations.
|
74 |
+
"""
|
75 |
+
|
76 |
+
search_history = set() # Keep track of explored topics to avoid redundancy
|
77 |
+
wikipedia_info = []
|
78 |
+
mining_model = genai.GenerativeModel(mining_model) # Initialize the generative model
|
79 |
+
|
80 |
+
for query in keywords:
|
81 |
+
search_terms = wikipedia.search(query) # Search Wikipedia using the keyword
|
82 |
+
|
83 |
+
for search_term in search_terms[:max_topics_per_query]: # Explore top results
|
84 |
+
if search_term in search_history:
|
85 |
+
continue # Skip if the topic has already been explored
|
86 |
+
|
87 |
+
search_history.add(search_term)
|
88 |
+
|
89 |
+
try:
|
90 |
+
page = wikipedia.page(search_term, auto_suggest=False) # Get the Wikipedia page
|
91 |
+
url = page.url
|
92 |
+
page_content = page.content
|
93 |
+
|
94 |
+
# Extract Relevant Information using the Generative Model
|
95 |
+
response = mining_model.generate_content(textwrap.dedent(f"""\
|
96 |
+
Extract relevant information related to the keyword "{query}"
|
97 |
+
from the following Wikipedia page content:
|
98 |
+
|
99 |
+
{page_content}
|
100 |
+
|
101 |
+
Note: Do not summarize the entire page. Only extract and return the information relevant to the keyword.
|
102 |
+
"""))
|
103 |
+
|
104 |
+
additional_sources = []
|
105 |
+
if response.candidates[0].citation_metadata:
|
106 |
+
additional_sources = [source.url for source in response.candidates[0].citation_metadata.citation_sources]
|
107 |
+
|
108 |
+
wikipedia_info.append({
|
109 |
+
"topic": search_term,
|
110 |
+
"summary": response.text,
|
111 |
+
"url": url,
|
112 |
+
"additional_sources": additional_sources
|
113 |
+
})
|
114 |
+
|
115 |
+
except wikipedia.exceptions.DisambiguationError: # Handle ambiguous search results
|
116 |
+
print(f"Ambiguous results for '{search_term}' (originally for '{query}'), skipping.")
|
117 |
+
except wikipedia.exceptions.PageError: # Handle cases where no Wikipedia page is found
|
118 |
+
print(f"No Wikipedia page found for '{search_term}', skipping.")
|
119 |
+
except Exception as e: # Handle other exceptions
|
120 |
+
st.error(f"Error searching Wikipedia: {e}")
|
121 |
+
|
122 |
+
return wikipedia_info
|
123 |
+
|
124 |
+
def extract_keywords_simple(extracted_text):
|
125 |
+
"""Extracts keywords and important information from the given text using Gemini 1.5 Pro."""
|
126 |
+
prompt = """
|
127 |
+
You are an expert detective assistant. Analyze the following text and extract the most important keywords and
|
128 |
+
information that could be relevant to a criminal investigation:
|
129 |
+
""" + extracted_text
|
130 |
+
|
131 |
+
response = model.generate_content([prompt])
|
132 |
+
keywords = response.text.strip().split("\n") # Assuming each keyword is on a separate line
|
133 |
+
return keywords
|
134 |
+
|
135 |
+
# Function to extract text from various file types
|
136 |
+
def extract_text_from_files(uploaded_files):
|
137 |
+
"""Extracts text content from a list of uploaded files, handling various file types."""
|
138 |
+
extracted_text = []
|
139 |
+
for uploaded_file in uploaded_files:
|
140 |
+
file_type = uploaded_file.type
|
141 |
+
if file_type == "text/plain":
|
142 |
+
# Plain Text File
|
143 |
+
raw_text = str(uploaded_file.read(), "utf-8")
|
144 |
+
extracted_text.append(raw_text.strip())
|
145 |
+
elif file_type == "application/pdf":
|
146 |
+
# PDF Document
|
147 |
+
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
148 |
+
text = ""
|
149 |
+
for page_num in range(len(pdf_reader.pages)):
|
150 |
+
page = pdf_reader.pages[page_num]
|
151 |
+
text += page.extract_text()
|
152 |
+
extracted_text.append(text)
|
153 |
+
else:
|
154 |
+
# Other Document Types (Using Textract)
|
155 |
+
try:
|
156 |
+
text = textract.process(uploaded_file).decode("utf-8")
|
157 |
+
extracted_text.append(text)
|
158 |
+
except Exception as e:
|
159 |
+
st.error(f"Error extracting text from file: {e}")
|
160 |
+
return extracted_text
|
161 |
+
|
162 |
+
# Function to process images using Gemini Pro Vision
|
163 |
+
def process_images(uploaded_images):
|
164 |
+
"""Processes a list of uploaded images using Gemini Pro Vision to extract relevant information."""
|
165 |
+
image_insights = []
|
166 |
+
for uploaded_image in uploaded_images:
|
167 |
+
try:
|
168 |
+
image = PIL.Image.open(uploaded_image)
|
169 |
+
prompt = """
|
170 |
+
Analyze the provided image and extract any relevant information that could be useful for an investigation.
|
171 |
+
"""
|
172 |
+
response = vision_model.generate_content([prompt, image])
|
173 |
+
image_insights.append(response.text)
|
174 |
+
except Exception as e:
|
175 |
+
st.error(f"Error processing image: {e}")
|
176 |
+
return image_insights
|
177 |
+
|
178 |
+
def search_internet(case_text):
|
179 |
+
"""Generates search queries using Gemini 1.5 Pro and performs internet searches for case-related information."""
|
180 |
+
prompt = """
|
181 |
+
You are an expert detective assistant. Analyze the following case information and generate a list of search queries
|
182 |
+
to find relevant information on the internet:
|
183 |
+
""" + str(case_text)
|
184 |
+
|
185 |
+
response = model.generate_content([prompt])
|
186 |
+
search_queries = response.text.strip().split("\n")
|
187 |
+
|
188 |
+
# Set up Google Custom Search API client
|
189 |
+
api_key = "AIzaSyD-1OMuZ0CxGAek0PaXrzHOmcDWFvZQtm8"
|
190 |
+
cse_id = "73499643bc7bf47ed"
|
191 |
+
service = build("customsearch", "v1", developerKey=api_key)
|
192 |
+
|
193 |
+
internet_search_results = []
|
194 |
+
for query in search_queries:
|
195 |
+
try:
|
196 |
+
# Perform Google Custom Search API request
|
197 |
+
result = service.cse().list(q=query, cx=cse_id).execute()
|
198 |
+
|
199 |
+
# Extract relevant information from search results
|
200 |
+
search_results = []
|
201 |
+
if "items" in result:
|
202 |
+
for item in result["items"]:
|
203 |
+
title = item.get("title", "")
|
204 |
+
snippet = item.get("snippet", "")
|
205 |
+
link = item.get("link", "")
|
206 |
+
search_results.append({"title": title, "snippet": snippet, "url": link})
|
207 |
+
|
208 |
+
internet_search_results.extend(search_results) # Accumulate results from each query
|
209 |
+
except Exception as e:
|
210 |
+
st.error(f"Error searching the internet: {e}")
|
211 |
+
|
212 |
+
return internet_search_results
|
213 |
+
|
214 |
+
def investigate():
|
215 |
+
"""Handles the case investigation process, including file upload, text extraction, embedding generation,
|
216 |
+
image processing, information analysis using Gemini models, web/Wikipedia search, and case report generation.
|
217 |
+
"""
|
218 |
+
st.header("Case Investigation")
|
219 |
+
|
220 |
+
# File upload for documents and images
|
221 |
+
uploaded_documents = st.file_uploader("Upload Case Documents", accept_multiple_files=True, type=["txt", "pdf", "docx"])
|
222 |
+
uploaded_images = st.file_uploader("Upload Case Images", accept_multiple_files=True, type=["jpg", "png", "jpeg"])
|
223 |
+
|
224 |
+
if uploaded_documents and uploaded_images and st.button("Analyze Case"):
|
225 |
+
# Extract text from uploaded documents
|
226 |
+
case_text = extract_text_from_files(uploaded_documents)
|
227 |
+
|
228 |
+
# Extract keywords and important information from the text
|
229 |
+
keywords = extract_keywords_simple("\n\n".join(case_text))
|
230 |
+
|
231 |
+
# Generate embeddings for the extracted text
|
232 |
+
case_embeddings = generate_embeddings_from_documents(case_text)
|
233 |
+
|
234 |
+
# Process images using Gemini Pro Vision
|
235 |
+
image_insights = process_images(uploaded_images)
|
236 |
+
|
237 |
+
# Combine text, image, and keyword information
|
238 |
+
combined_information = {
|
239 |
+
"case_text": case_text,
|
240 |
+
"case_embeddings": case_embeddings,
|
241 |
+
"image_insights": image_insights,
|
242 |
+
"keywords": keywords
|
243 |
+
}
|
244 |
+
|
245 |
+
# Analyze combined information using Gemini 1.5 Pro
|
246 |
+
prompt = """
|
247 |
+
You are Sherlock Holmes, the renowned detective. Analyze the following case information and provide insights or
|
248 |
+
suggestions for further investigation:
|
249 |
+
""" + str(combined_information)
|
250 |
+
|
251 |
+
response = model.generate_content([sherlock_persona, sherlock_guidelines, prompt, *case_embeddings])
|
252 |
+
st.write(response.text)
|
253 |
+
|
254 |
+
# Search Wikipedia and the web for related information
|
255 |
+
wikipedia_info = search_and_scrape_wikipedia(keywords)
|
256 |
+
web_search_results = search_internet("\n\n".join(case_text)) # Search the web
|
257 |
+
|
258 |
+
# Generate a case report in Sherlock Holmes's style
|
259 |
+
report_prompt = """
|
260 |
+
You are Sherlock Holmes, the renowned detective. Based on the case information, your analysis, findings from
|
261 |
+
Wikipedia and the web, and the extracted keywords, generate a comprehensive case report in your signature style,
|
262 |
+
including deductions, potential suspects, and conclusions.
|
263 |
+
"""
|
264 |
+
|
265 |
+
final_report = model.generate_content([sherlock_persona, sherlock_guidelines, report_prompt,
|
266 |
+
*case_embeddings, str(wikipedia_info), str(web_search_results)])
|
267 |
+
st.header("Case Report")
|
268 |
+
st.write(final_report.text)
|
269 |
+
|
270 |
+
else:
|
271 |
+
st.info("Please upload both case documents and images to proceed with the investigation.")
|
272 |
+
|
273 |
+
# Chat with Sherlock Holmes (Gemini 1.5 Pro)
|
274 |
+
st.write("Alternatively, you may engage in a conversation with Sherlock Holmes.")
|
275 |
+
user_query = st.text_input("Ask Sherlock:")
|
276 |
+
if user_query:
|
277 |
+
response = model.generate_content([sherlock_persona, sherlock_guidelines, user_query])
|
278 |
+
st.write(response.text)
|
279 |
+
def main():
|
280 |
+
# --- Vintage Sherlock Holmes Theme ---
|
281 |
+
st.set_page_config(page_title="AI Detective Sherlock Holmes", page_icon=":mag_right:")
|
282 |
+
|
283 |
+
# Custom CSS for Styling
|
284 |
+
vintage_css = """
|
285 |
+
<style>
|
286 |
+
body {
|
287 |
+
background-color: #d2b48c; /* Antique White */
|
288 |
+
color: #332200; /* Dark Brown */
|
289 |
+
font-family: 'Times New Roman', serif;
|
290 |
+
}
|
291 |
+
h1, h2, h3 {
|
292 |
+
color: #8b4513; /* Saddle Brown */
|
293 |
+
}
|
294 |
+
.stTextInput > div > div > input {
|
295 |
+
border: 1px solid #8b4513;
|
296 |
+
border-radius: 5px;
|
297 |
+
}
|
298 |
+
.stButton > button {
|
299 |
+
background-color: #8b4513;
|
300 |
+
color: white;
|
301 |
+
border: none;
|
302 |
+
border-radius: 5px;
|
303 |
+
}
|
304 |
+
</style>
|
305 |
+
"""
|
306 |
+
st.markdown(vintage_css, unsafe_allow_html=True) # Apply custom CSS
|
307 |
+
|
308 |
+
# Title and Header
|
309 |
+
st.title("AI Detective Sherlock Holmes")
|
310 |
+
st.header("_'Elementary, my dear Watson!'_")
|
311 |
+
|
312 |
+
# Add a sidebar for navigation
|
313 |
+
st.sidebar.title("Navigation")
|
314 |
+
options = ["Investigate Case", "Chat with Sherlock"]
|
315 |
+
choice = st.sidebar.radio("Choose an option:", options)
|
316 |
+
|
317 |
+
if choice == "Investigate Case":
|
318 |
+
investigate()
|
319 |
+
else:
|
320 |
+
# Chat with Sherlock Holmes (Gemini 1.5 Pro)
|
321 |
+
st.write("No case files uploaded. Feel free to chat with Sherlock Holmes.")
|
322 |
+
user_query = st.text_input("Ask Sherlock:")
|
323 |
+
if user_query:
|
324 |
+
response = model.generate_content([sherlock_persona, sherlock_guidelines, user_query])
|
325 |
+
st.write(response.text)
|
326 |
+
|
327 |
+
if __name__ == "__main__":
|
328 |
+
main()
|