Spaces:
Runtime error
Runtime error
import gradio as gr | |
from diffusers import StableDiffusionPipeline | |
import torch | |
import io | |
from PIL import Image | |
import os | |
from cryptography.fernet import Fernet | |
from google.cloud import storage | |
import pinecone | |
import json | |
import uuid | |
import pandas as pd | |
# decrypt Storage Cloud credentials | |
fernet = Fernet(os.environ['DECRYPTION_KEY']) | |
with open('cloud-storage.encrypted', 'rb') as fp: | |
encrypted = fp.read() | |
creds = json.loads(fernet.decrypt(encrypted).decode()) | |
# then save creds to file | |
with open('cloud-storage.json', 'w', encoding='utf-8') as fp: | |
fp.write(json.dumps(creds, indent=4)) | |
# connect to Cloud Storage | |
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'cloud-storage.json' | |
storage_client = storage.Client() | |
bucket = storage_client.get_bucket('hf-diffusion-images') | |
# get api key for pinecone auth | |
PINECONE_KEY = os.environ['PINECONE_KEY'] | |
index_id = "hf-diffusion" | |
# init connection to pinecone | |
pinecone.init( | |
api_key=PINECONE_KEY, | |
environment="us-west1-gcp" | |
) | |
if index_id not in pinecone.list_indexes(): | |
raise ValueError(f"Index '{index_id}' not found") | |
index = pinecone.Index(index_id) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
print(f"Using '{device}' device...") | |
# init all of the models and move them to a given GPU | |
pipe = StableDiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", use_auth_token=os.environ['HF_AUTH'] | |
) | |
pipe.to(device) | |
missing_im = Image.open('missing.png') | |
threshold = 0.85 | |
def encode_text(text: str): | |
text_inputs = pipe.tokenizer( | |
text, return_tensors='pt' | |
).to(device) | |
text_embeds = pipe.text_encoder(**text_inputs) | |
text_embeds = text_embeds.pooler_output.cpu().tolist()[0] | |
return text_embeds | |
def prompt_query(text: str): | |
print(f"Running prompt_query('{text}')") | |
embeds = encode_text(text) | |
try: | |
print("Try query pinecone") | |
xc = index.query(embeds, top_k=30, include_metadata=True) | |
print("query successful") | |
except Exception as e: | |
print(f"Error during query: {e}") | |
# reinitialize connection | |
print("Try reinitialize Pinecone connection") | |
pinecone.init(api_key=PINECONE_KEY, environment='us-west1-gcp') | |
index2 = pinecone.Index(index_id) | |
try: | |
print("Now try querying pinecone again") | |
xc = index2.query(embeds, top_k=30, include_metadata=True) | |
print("query successful") | |
except Exception as e: | |
raise ValueError(e) | |
prompts = [ | |
match['metadata']['prompt'] for match in xc['matches'] | |
] | |
scores = [round(match['score'], 2) for match in xc['matches']] | |
# deduplicate while preserving order | |
df = pd.DataFrame({'Similarity': scores, 'Prompt': prompts}) | |
df = df.drop_duplicates(subset='Prompt', keep='first') | |
df = df[df['Prompt'].str.len() > 7].head() | |
return df | |
def diffuse(text: str): | |
# diffuse | |
out = pipe(text) | |
if any(out.nsfw_content_detected): | |
return {} | |
else: | |
_id = str(uuid.uuid4()) | |
# add image to Cloud Storage | |
im = out.images[0] | |
im.save(f'{_id}.png', format='png') | |
added_gcp = False | |
# push to storage | |
try: | |
print("try push to Cloud Storage") | |
blob = bucket.blob(f'images/{_id}.png') | |
print("try upload_from_filename") | |
blob.upload_from_filename(f'{_id}.png') | |
added_gcp = True | |
# add embedding and metadata to Pinecone | |
embeds = encode_text(text) | |
meta = { | |
'prompt': text, | |
'image_url': f'images/{_id}.png' | |
} | |
try: | |
print("now try upsert to pinecone") | |
index.upsert([(_id, embeds, meta)]) | |
print("upsert successful") | |
except Exception as e: | |
try: | |
print("hit exception, now trying to reinit Pinecone connection") | |
pinecone.init(api_key=PINECONE_KEY, environment='us-west1-gcp') | |
index2 = pinecone.Index(index_id) | |
print(f"reconnected to pinecone '{index_id}' index") | |
index2.upsert([(_id, embeds, meta)]) | |
print("upsert successful") | |
except Exception as e: | |
print(f"PINECONE_ERROR: {e}") | |
except Exception as e: | |
print(f"ERROR: New image not uploaded due to error with {'Pinecone' if added_gcp else 'Cloud Storage'}") | |
# delete local file | |
os.remove(f'{_id}.png') | |
return out.images[0] | |
def get_image(url: str): | |
blob = bucket.blob(url).download_as_string() | |
blob_bytes = io.BytesIO(blob) | |
im = Image.open(blob_bytes) | |
return im | |
def test_image(_id, image): | |
try: | |
image.save('tmp.png') | |
return True | |
except OSError: | |
# delete corrupted file from pinecone and cloud | |
index.delete(ids=[_id]) | |
bucket.blob(f"images/{_id}.png").delete() | |
print(f"DELETED '{_id}'") | |
return False | |
def prompt_image(text: str): | |
print(f"prompt_image('{text}')") | |
embeds = encode_text(text) | |
try: | |
print("try query pinecone") | |
xc = index.query(embeds, top_k=9, include_metadata=True) | |
except Exception as e: | |
print(f"Error during query: {e}") | |
# reinitialize connection | |
pinecone.init(api_key=PINECONE_KEY, environment='us-west1-gcp') | |
index2 = pinecone.Index(index_id) | |
try: | |
print("try query pinecone after reinit") | |
xc = index2.query(embeds, top_k=9, include_metadata=True) | |
except Exception as e: | |
raise ValueError(e) | |
image_urls = [ | |
match['metadata']['image_url'] for match in xc['matches'] | |
] | |
scores = [match['score'] for match in xc['matches']] | |
ids = [match['id'] for match in xc['matches']] | |
images = [] | |
print("Begin looping through (ids, image_urls)") | |
for _id, image_url in zip(ids, image_urls): | |
try: | |
print("download_as_string from GCP") | |
blob = bucket.blob(image_url).download_as_string() | |
print("downloaded successfully") | |
blob_bytes = io.BytesIO(blob) | |
im = Image.open(blob_bytes) | |
print("image opened successfully") | |
if test_image(_id, im): | |
images.append(im) | |
print("image accessible") | |
else: | |
images.append(missing_im) | |
print("image NOT accessible") | |
except ValueError: | |
print(f"ValueError: '{image_url}'") | |
return images, scores | |
# __APP FUNCTIONS__ | |
def set_suggestion(text: str): | |
return gr.TextArea.update(value=text[0]) | |
def set_images(text: str): | |
images, scores = prompt_image(text) | |
match_found = False | |
for score in scores: | |
if score > threshold: | |
match_found = True | |
if match_found: | |
print("MATCH FOUND") | |
return gr.Gallery.update(value=images) | |
else: | |
print("NO MATCH FOUND") | |
diffuse(text) | |
print(f"diffusion for '{text}' complete") | |
images, scores = prompt_image(text) | |
return gr.Gallery.update(value=images) | |
# __CREATE APP__ | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown( | |
""" | |
# Dream Cacher | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.TextArea( | |
value="A person surfing", | |
placeholder="Enter a prompt to dream about", | |
interactive=True | |
) | |
search = gr.Button(value="Search!") | |
suggestions = gr.Dataframe( | |
values=[], | |
headers=['Similarity', 'Prompt'] | |
) | |
# event listener for change in prompt | |
prompt.change( | |
prompt_query, prompt, suggestions, | |
show_progress=False | |
) | |
# results column | |
with gr.Column(): | |
pics = gr.Gallery() | |
pics.style(grid=3) | |
# search event listening | |
try: | |
search.click(set_images, prompt, pics) | |
except OSError: | |
print("OSError") | |
demo.launch() |