dream-cacher / app.py
jamescalam's picture
Create app.py
99caaea
raw
history blame
4.14 kB
from diffusers import StableDiffusionPipeline
import torch
import io
from PIL import Image
import os
from google.cloud import storage
import pinecone
# create Storage Cloud credentials
G_API = {
"type": os.environ["type"],
"project_id": os.environ["project_id"],
"private_key_id": os.environ["private_key_id"],
"private_key": os.environ["private_key"],
"client_email": os.environ["client_email"],
"client_id": os.environ["client_id"],
"auth_uri": os.environ["auth_uri"],
"token_uri": os.environ["token_uri"],
"auth_provider_x509_cert_url": os.environ["auth_provider_x509_cert_url"],
"client_x509_cert_url": os.environ["client_x509_cert_url"]
}
with open('cloud-storage.json', 'w', encoding='utf-8') as fp:
fp.write(json.dumps(G_API))
del G_API
# connect to Cloud Storage
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'cloud-storage.json'
storage_client = storage.Client()
bucket = storage_client.get_bucket('hf-diffusion-images')
# get api key for pinecone auth
PINECONE_KEY = os.environ['PINECONE_KEY']
index_id = "hf-diffusion"
# init connection to pinecone
pinecone.init(
api_key=PINECONE_KEY,
environment="us-west1-gcp"
)
if index_id not in pinecone.list_indexes():
raise ValueError(f"Index '{index_id}' not found")
index = pinecone.Index(index_id)
device = 'cpu'
# init all of the models and move them to a given GPU
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", use_auth_token=True
)
pipe.to(device)
def encode_text(text: str):
text_inputs = pipe.tokenizer(
text, return_tensors='pt'
).to(device)
text_embeds = pipe.text_encoder(**text_inputs)
text_embeds = text_embeds.pooler_output.cpu().tolist()[0]
return text_embeds
def prompt_query(text: str):
embeds = encode_text(text)
xc = index.query(embeds, top_k=30, include_metadata=True)
prompts = [
match['metadata']['prompt'] for match in xc['matches']
]
# deduplicate while preserving order
prompts = list(dict.fromkeys(prompts))
return [[x] for x in prompts[:5]]
def get_image(url: str):
blob = bucket.blob(url).download_as_string()
blob_bytes = io.BytesIO(blob)
im = Image.open(blob_bytes)
return im
def prompt_image(text: str):
embeds = encode_text(text)
xc = index.query(embeds, top_k=9, include_metadata=True)
image_urls = [
match['metadata']['image_url'] for match in xc['matches']
]
images = []
for image_url in image_urls:
try:
blob = bucket.blob(image_url).download_as_string()
blob_bytes = io.BytesIO(blob)
im = Image.open(blob_bytes)
images.append(im)
except ValueError:
print(f"error for '{image_url}'")
return images
# __APP FUNCTIONS__
def set_suggestion(text: str):
return gr.TextArea.update(value=text[0])
def set_images(text: str):
images = prompt_image(text)
return gr.Gallery.update(value=images)
# __CREATE APP__
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# Dream Cacher
"""
)
with gr.Row():
with gr.Column():
prompt = gr.TextArea(
value="A dream about a cat",
placeholder="Enter a prompt to dream about",
interactive=True
)
search = gr.Button(value="Search!")
suggestions = gr.Dataset(
components=[prompt],
samples=[
["Something"],
["something else"]
]
)
# event listener for change in prompt
prompt.change(prompt_query, prompt, suggestions)
# event listener for click on suggestion
suggestions.click(
set_suggestion,
suggestions,
suggestions.components
)
# results column
with gr.Column():
pics = gr.Gallery()
pics.style(grid=3)
# search event listening
search.click(set_images, prompt, pics)
demo.launch()