Spaces:
Runtime error
Runtime error
File size: 3,921 Bytes
99caaea 2335e48 99caaea 83798fc 99caaea 2335e48 99caaea 1a67055 99caaea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
from diffusers import StableDiffusionPipeline
import torch
import io
from PIL import Image
import os
from cryptography.fernet import Fernet
from google.cloud import storage
import pinecone
import json
# decrypt Storage Cloud credentials
fernet = Fernet(os.environ['DECRYPTION_KEY'])
with open('cloud-storage.encrypted', 'rb') as fp:
encrypted = fp.read()
creds = json.loads(fernet.decrypt(encrypted).decode())
# then save creds to file
with open('cloud-storage.json', 'w', encoding='utf-8') as fp:
fp.write(json.dumps(creds, indent=4))
# connect to Cloud Storage
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'cloud-storage.json'
storage_client = storage.Client()
bucket = storage_client.get_bucket('hf-diffusion-images')
# get api key for pinecone auth
PINECONE_KEY = os.environ['PINECONE_KEY']
index_id = "hf-diffusion"
# init connection to pinecone
pinecone.init(
api_key=PINECONE_KEY,
environment="us-west1-gcp"
)
if index_id not in pinecone.list_indexes():
raise ValueError(f"Index '{index_id}' not found")
index = pinecone.Index(index_id)
device = 'cpu'
# init all of the models and move them to a given GPU
pipe = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4", use_auth_token=os.environ['HF_AUTH']
)
pipe.to(device)
def encode_text(text: str):
text_inputs = pipe.tokenizer(
text, return_tensors='pt'
).to(device)
text_embeds = pipe.text_encoder(**text_inputs)
text_embeds = text_embeds.pooler_output.cpu().tolist()[0]
return text_embeds
def prompt_query(text: str):
embeds = encode_text(text)
xc = index.query(embeds, top_k=30, include_metadata=True)
prompts = [
match['metadata']['prompt'] for match in xc['matches']
]
# deduplicate while preserving order
prompts = list(dict.fromkeys(prompts))
return [[x] for x in prompts[:5]]
def get_image(url: str):
blob = bucket.blob(url).download_as_string()
blob_bytes = io.BytesIO(blob)
im = Image.open(blob_bytes)
return im
def prompt_image(text: str):
embeds = encode_text(text)
xc = index.query(embeds, top_k=9, include_metadata=True)
image_urls = [
match['metadata']['image_url'] for match in xc['matches']
]
images = []
for image_url in image_urls:
try:
blob = bucket.blob(image_url).download_as_string()
blob_bytes = io.BytesIO(blob)
im = Image.open(blob_bytes)
images.append(im)
except ValueError:
print(f"error for '{image_url}'")
return images
# __APP FUNCTIONS__
def set_suggestion(text: str):
return gr.TextArea.update(value=text[0])
def set_images(text: str):
images = prompt_image(text)
return gr.Gallery.update(value=images)
# __CREATE APP__
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# Dream Cacher
"""
)
with gr.Row():
with gr.Column():
prompt = gr.TextArea(
value="A dream about a cat",
placeholder="Enter a prompt to dream about",
interactive=True
)
search = gr.Button(value="Search!")
suggestions = gr.Dataset(
components=[prompt],
samples=[
["Something"],
["something else"]
]
)
# event listener for change in prompt
prompt.change(prompt_query, prompt, suggestions)
# event listener for click on suggestion
suggestions.click(
set_suggestion,
suggestions,
suggestions.components
)
# results column
with gr.Column():
pics = gr.Gallery()
pics.style(grid=3)
# search event listening
search.click(set_images, prompt, pics)
demo.launch() |