Spaces:
Runtime error
Runtime error
File size: 6,048 Bytes
666b09a a50de00 666b09a 591f48d 666b09a a50de00 666b09a a50de00 666b09a 93da16f 2ccdcf8 93da16f 666b09a 93da16f 666b09a a92dc54 666b09a 69dc523 a50de00 69dc523 a50de00 2c198cf 666b09a a92dc54 666b09a a92dc54 2ccdcf8 a92dc54 666b09a 93da16f a50de00 93da16f 666b09a 93da16f 666b09a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import streamlit as st
import pinecone
from sentence_transformers import SentenceTransformer
import logging
PINECONE_KEY = st.secrets["PINECONE_KEY"] # app.pinecone.io
INDEX_ID = 'ask-youtube'
@st.experimental_singleton
def init_pinecone():
pinecone.init(api_key=PINECONE_KEY, environment="us-west1-gcp")
return pinecone.Index(INDEX_ID)
@st.experimental_singleton
def init_retriever():
return SentenceTransformer("multi-qa-mpnet-base-dot-v1")
def make_query(query, retriever, top_k=10, include_values=True, include_metadata=True, filter=None):
xq = retriever.encode([query]).tolist()
logging.info(f"Query: {query}")
attempt = 0
while attempt < 3:
try:
xc = st.session_state.index.query(
xq,
top_k=top_k,
include_values=include_values,
include_metadata=include_metadata,
filter=filter
)
matches = xc['matches']
break
except:
# force reload
pinecone.init(api_key=PINECONE_KEY, environment="us-west1-gcp")
st.session_state.index = pinecone.Index(INDEX_ID)
attempt += 1
matches = []
if len(matches) == 0:
logging.error(f"Query failed")
return matches
st.session_state.index = init_pinecone()
retriever = init_retriever()
def card(thumbnail: str, title: str, urls: list, contexts: list, starts: list, ends: list):
meta = [(e, s, u, c) for e, s, u, c in zip(ends, starts, urls, contexts)]
meta.sort(reverse=False)
text_content = []
current_start = 0
current_end = 0
for end, start, url, context in meta:
# reformat seconds to timestamp
time = start / 60
mins = f"0{int(time)}"[-2:]
secs = f"0{int(round((time - int(mins))*60, 0))}"[-2:]
timestamp = f"{mins}:{secs}"
if start < current_end and start > current_start:
# this means it is a continuation of the previous sentence
text_content[-1][0] = text_content[-1][0].split(context[:10])[0]
text_content.append([f"[{timestamp}] {context.capitalize()}", url])
else:
text_content.append(["xxLINEBREAKxx", ""])
text_content.append([f"[{timestamp}] {context}", url])
current_start = start
current_end = end
html_text = ""
for text, url in text_content:
if text == "xxLINEBREAKxx":
html_text += "<br>"
else:
html_text += f"<small><a href={url}>{text.strip()}... </a></small>"
print(text)
html = f"""
<div class="container-fluid">
<div class="row align-items-start">
<div class="col-md-4 col-sm-4">
<div class="position-relative">
<a href={urls[0]}><img src={thumbnail} class="img-fluid" style="width: 192px; height: 106px"></a>
</div>
</div>
<div class="col-md-8 col-sm-8">
<h2>{title}</h2>
</div>
<div>
{html_text}
<br><br>
"""
return st.markdown(html, unsafe_allow_html=True)
channel_map = {
'James Briggs': 'UCv83tO5cePwHMt1952IVVHw',
'Daniel Bourke': 'UCr8O8l5cCX85Oem1d18EezQ',
'Yannic Kilcher': 'UCZHmQk67mSJgfCCTn7xBfew',
'AI Coffee Break with Letitia': 'UCobqgqE4i5Kf7wrxRxhToQA',
'sentdex': 'UCfzlCWGWYyIQ0aLC5w48gBQ'
}
st.write("""
# YouTube Q&A
""")
st.info("""
YouTube search built as [explained here](https://pinecone.io/learn/openai-whisper)!
*The current search scope is limited to a few videos talking about ML, NLP, and vector search*. Add requests for channels to include in the [*Community* tab](https://huggingface.co/spaces/jamescalam/ask-youtube/discussions).
""")
st.markdown("""
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">
""", unsafe_allow_html=True)
query = st.text_input("Search!", "")
with st.expander("Advanced Options"):
channel_options = st.multiselect(
'Channels to Search',
['James Briggs', 'Daniel Bourke', 'Yannic Kilcher', 'AI Coffee Break with Letitia', 'sentdex'],
['James Briggs', 'Daniel Bourke', 'Yannic Kilcher', 'AI Coffee Break with Letitia', 'sentdex']
)
if query != "":
channels = [channel_map[name] for name in channel_options]
print(f"query: {query}")
matches = make_query(
query, retriever, top_k=5,
filter={
'channel_id': {'$in': channels}
}
)
results = {}
order = []
for context in matches:
video_id = context['metadata']['url'].split('/')[-1]
if video_id not in results:
results[video_id] = {
'title': context['metadata']['title'],
'urls': [f"{context['metadata']['url']}?t={int(context['metadata']['start'])}"],
'contexts': [context['metadata']['text']],
'starts': [int(context['metadata']['start'])],
'ends': [int(context['metadata']['end'])]
}
order.append(video_id)
else:
results[video_id]['urls'].append(
f"{context['metadata']['url']}?t={int(context['metadata']['start'])}"
)
results[video_id]['contexts'].append(
context['metadata']['text']
)
results[video_id]['starts'].append(int(context['metadata']['start']))
results[video_id]['ends'].append(int(context['metadata']['end']))
# now display cards
for video_id in order:
card(
thumbnail=f"https://img.youtube.com/vi/{video_id}/maxresdefault.jpg",
title=results[video_id]['title'],
urls=results[video_id]['urls'],
contexts=results[video_id]['contexts'],
starts=results[video_id]['starts'],
ends=results[video_id]['ends']
) |