IDM-VTON
update IDM-VTON Demo
938e515
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import os
from itertools import chain
import cv2
import tqdm
from detectron2.config import get_cfg
from detectron2.data import DatasetCatalog, MetadataCatalog, build_detection_train_loader
from detectron2.data import detection_utils as utils
from detectron2.data.build import filter_images_with_few_keypoints
from detectron2.utils.logger import setup_logger
from detectron2.utils.visualizer import Visualizer
def setup(args):
cfg = get_cfg()
if args.config_file:
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
return cfg
def parse_args(in_args=None):
parser = argparse.ArgumentParser(description="Visualize ground-truth data")
parser.add_argument(
"--source",
choices=["annotation", "dataloader"],
required=True,
help="visualize the annotations or the data loader (with pre-processing)",
)
parser.add_argument("--config-file", metavar="FILE", help="path to config file")
parser.add_argument("--output-dir", default="./", help="path to output directory")
parser.add_argument("--show", action="store_true", help="show output in a window")
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
return parser.parse_args(in_args)
if __name__ == "__main__":
args = parse_args()
logger = setup_logger()
logger.info("Arguments: " + str(args))
cfg = setup(args)
dirname = args.output_dir
os.makedirs(dirname, exist_ok=True)
metadata = MetadataCatalog.get(cfg.DATASETS.TRAIN[0])
def output(vis, fname):
if args.show:
print(fname)
cv2.imshow("window", vis.get_image()[:, :, ::-1])
cv2.waitKey()
else:
filepath = os.path.join(dirname, fname)
print("Saving to {} ...".format(filepath))
vis.save(filepath)
scale = 2.0 if args.show else 1.0
if args.source == "dataloader":
train_data_loader = build_detection_train_loader(cfg)
for batch in train_data_loader:
for per_image in batch:
# Pytorch tensor is in (C, H, W) format
img = per_image["image"].permute(1, 2, 0).cpu().detach().numpy()
img = utils.convert_image_to_rgb(img, cfg.INPUT.FORMAT)
visualizer = Visualizer(img, metadata=metadata, scale=scale)
target_fields = per_image["instances"].get_fields()
labels = [metadata.thing_classes[i] for i in target_fields["gt_classes"]]
vis = visualizer.overlay_instances(
labels=labels,
boxes=target_fields.get("gt_boxes", None),
masks=target_fields.get("gt_masks", None),
keypoints=target_fields.get("gt_keypoints", None),
)
output(vis, str(per_image["image_id"]) + ".jpg")
else:
dicts = list(chain.from_iterable([DatasetCatalog.get(k) for k in cfg.DATASETS.TRAIN]))
if cfg.MODEL.KEYPOINT_ON:
dicts = filter_images_with_few_keypoints(dicts, 1)
for dic in tqdm.tqdm(dicts):
img = utils.read_image(dic["file_name"], "RGB")
visualizer = Visualizer(img, metadata=metadata, scale=scale)
vis = visualizer.draw_dataset_dict(dic)
output(vis, os.path.basename(dic["file_name"]))