jaleesahmed commited on
Commit
174521f
·
1 Parent(s): 8a3702d
Files changed (1) hide show
  1. app.py +1 -2
app.py CHANGED
@@ -16,20 +16,19 @@ def data_description(action_type):
16
  data_encoded[col] = label_encoding.fit_transform(data_encoded[col])
17
  input_data = data_encoded.drop(['Attrition'], axis=1)
18
  target_data = data_encoded[['Attrition']]
 
19
 
20
  if action_type == "Input Data":
21
  return input_data.head()
22
  if action_type == "Target Data":
23
  return target_data.head()
24
  if action_type == "Feature Selection By Mutual Information":
25
- col_values = list(input_data.columns.values)
26
  feature_scores = mutual_info_classif(input_data, target_data)
27
  data = [["Feature", "Mutual Information (0: independent, 1: dependent)"]]
28
  for score, fname in sorted(zip(feature_scores, col_values), reverse=True)[:10]:
29
  data.append([fname, score])
30
  return data
31
  if action_type == "Feature Selection By Chi Square":
32
- col_values = list(input_data.columns.values)
33
  feature_scores = chi2(input_data, target_data)[0]
34
  data = [["Feature", "Mutual Information (0: independent, 1: dependent)"]]
35
  for score, fname in sorted(zip(feature_scores, col_values), reverse=True)[:10]:
 
16
  data_encoded[col] = label_encoding.fit_transform(data_encoded[col])
17
  input_data = data_encoded.drop(['Attrition'], axis=1)
18
  target_data = data_encoded[['Attrition']]
19
+ col_values = list(input_data.columns.values)
20
 
21
  if action_type == "Input Data":
22
  return input_data.head()
23
  if action_type == "Target Data":
24
  return target_data.head()
25
  if action_type == "Feature Selection By Mutual Information":
 
26
  feature_scores = mutual_info_classif(input_data, target_data)
27
  data = [["Feature", "Mutual Information (0: independent, 1: dependent)"]]
28
  for score, fname in sorted(zip(feature_scores, col_values), reverse=True)[:10]:
29
  data.append([fname, score])
30
  return data
31
  if action_type == "Feature Selection By Chi Square":
 
32
  feature_scores = chi2(input_data, target_data)[0]
33
  data = [["Feature", "Mutual Information (0: independent, 1: dependent)"]]
34
  for score, fname in sorted(zip(feature_scores, col_values), reverse=True)[:10]: