jaleesahmed commited on
Commit
1693da5
·
1 Parent(s): 3c33efd
Files changed (2) hide show
  1. app.py +1 -5
  2. requirements.txt +2 -0
app.py CHANGED
@@ -20,15 +20,11 @@ def update(name):
20
  data_selected = data_encoded[['EmployeeExperience', 'HealthBenefitsSatisfaction', 'SalarySatisfaction', 'Designation', 'HealthConscious',
21
  'EmployeeFeedbackSentiments', 'Education', 'Gender', 'HoursOfTrainingAttendedLastYear', 'InternalJobMovement', 'Attrition']]
22
 
23
- input_data = data_selected.drop(['Attrition'], axis=1)
24
- target_data = data_selected[['Attrition']]
25
- input_data = input_data[0:100]
26
- validation_data = input_data[100:198]
27
  validation_input_data = validation_data.drop(['Attrition'], axis=1)
28
  validation_target_data = validation_data[['Attrition']]
29
  reg = LinearRegression().fit(validation_input_data, validation_target_data)
30
  prediction_value = reg.predict(np.array([[2,2,1,3,1,2,0,1,40,1]]))
31
- print(prediction_value)
32
  return f"Prediction : , {prediction_value}!"
33
 
34
  with gr.Blocks() as demo:
 
20
  data_selected = data_encoded[['EmployeeExperience', 'HealthBenefitsSatisfaction', 'SalarySatisfaction', 'Designation', 'HealthConscious',
21
  'EmployeeFeedbackSentiments', 'Education', 'Gender', 'HoursOfTrainingAttendedLastYear', 'InternalJobMovement', 'Attrition']]
22
 
23
+ validation_data = data_selected[100:198]
 
 
 
24
  validation_input_data = validation_data.drop(['Attrition'], axis=1)
25
  validation_target_data = validation_data[['Attrition']]
26
  reg = LinearRegression().fit(validation_input_data, validation_target_data)
27
  prediction_value = reg.predict(np.array([[2,2,1,3,1,2,0,1,40,1]]))
 
28
  return f"Prediction : , {prediction_value}!"
29
 
30
  with gr.Blocks() as demo:
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ cufflinks
2
+ sklearn