bioasq-1 / rag.py
jiviteshjain
Fix.
d2b9f46
raw
history blame
4.58 kB
# %%
import os
import json
import torch
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
from transformers import (
pipeline,
TextGenerationPipeline,
AutoModelForCausalLM,
AutoTokenizer,
)
HF_TOKEN = os.environ["hf_token"]
SYSTEM_PROMPT = """You are a helpful question answering assistant. You will be given a context and a question. You need to provide the answer to the question based on the context. Answer briefly, based on the context. Only output the answer, and nothing else. Here is an example:
>> Context
Fascin is an actin-bundling protein that induces membrane protrusions and cell motility after the formation of lamellipodia or filopodia. Fascin expression has been associated with progression or prognosis in various neoplasms; however, its role in intrahepatic cholangiocarcinoma is unknown.
>> Question
What type of protein is fascin?
>> Answer
Actin-bundling protein
Now answer the user's question based on the user's given context.
"""
USER_PROMPT = """
>> Context
{context}
>> Question
{question}
>> Answer
"""
def load_embedder(model_path: str, device: str) -> SentenceTransformer:
embedder = SentenceTransformer(model_path)
embedder.to(device)
return embedder
def load_contexts(context_file: str) -> list[str]:
contexts = []
with open(context_file, "r") as f_in:
for line in f_in:
context = json.loads(line)
contexts.append(context["context"])
return contexts
def load_index(index_file: str) -> faiss.Index:
return faiss.read_index(index_file)
def load_reader(model_path: str, device: str) -> TextGenerationPipeline:
model = AutoModelForCausalLM.from_pretrained(model_path, token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(model_path, token=HF_TOKEN)
tokenizer.pad_token = tokenizer.eos_token
reader = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
token=HF_TOKEN,
device=device,
)
return reader
def construct_prompt(contexts: list[str], question: str) -> list[dict]:
return [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": USER_PROMPT.format(
context="\n".join(contexts), question=question
),
},
]
def load_all(
embedder_path: str,
context_file: str,
index_file: str,
reader_path: str,
) -> tuple[SentenceTransformer, list[str], faiss.Index, TextGenerationPipeline]:
embedder = load_embedder(embedder_path, "cpu")
contexts = load_contexts(context_file)
index = load_index(index_file)
reader_device = "cuda" if torch.cuda.is_available() else "cpu"
reader = load_reader(reader_path, reader_device)
return {
"embedder": embedder,
"contexts": contexts,
"index": index,
"reader": reader,
}
def run_query(
question: str,
embedder: SentenceTransformer,
index: faiss.Index,
contexts: list[str],
reader: TextGenerationPipeline,
top_k: int = 3,
) -> tuple[list[int], list[str], str]:
query_embedding = embedder.encode([question], normalize_embeddings=True)
_, retrieved_context_ids = index.search(query_embedding, top_k)
retrieved_context_ids = np.array(retrieved_context_ids) # shape: (1, top_k)
retrieved_contexts = []
for row in retrieved_context_ids:
retrieved_contexts.append(
[contexts[i] if contexts[i] is not None else "" for i in row]
)
# The code below is for a single question.
prompt = construct_prompt(retrieved_contexts[0], question)
answer = reader(prompt, max_new_tokens=128, return_full_text=False)
print(answer)
answer_text = answer[0]["generated_text"]
if ">> Answer" in answer_text:
answer_text = answer_text.split(">> Answer")[1].strip()
return retrieved_context_ids[0].tolist(), retrieved_contexts[0], answer_text
# %%
# embedder_path = "Snowflake/snowflake-arctic-embed-l"
# reader_path = "meta-llama/Llama-3.2-1B-Instruct"
# context_file = "../data/bioasq_contexts.jsonl"
# index_file = "../data/bioasq_contexts__snowflake-arctic-embed-l__float32_hnsw.index"
# embedder, contexts, index, reader = load_all(
# embedder_path, "cpu", context_file, index_file, reader_path, "mps"
# )
# query = "What cellular structures does fascin induce?"
# retrieved_context_ids, retrieved_contexts, answer_text = run_query(
# query, embedder, index, contexts, reader
# )
# %%