Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,4 +12,131 @@ from langchain_core.messages import HumanMessage
|
|
12 |
from typing_extensions import TypedDict
|
13 |
from typing import Annotated, Sequence
|
14 |
import functools
|
15 |
-
import operator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from typing_extensions import TypedDict
|
13 |
from typing import Annotated, Sequence
|
14 |
import functools
|
15 |
+
import operator
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
# Initialize tools
|
20 |
+
llm = ChatOpenAI()
|
21 |
+
|
22 |
+
tavily_tool = TavilySearchResults(max_results=5)
|
23 |
+
search_google_tool = Tool(
|
24 |
+
name="GoogleSearch",
|
25 |
+
func=GoogleSearchAPIWrapper().run,
|
26 |
+
description="Search information using Google Search API."
|
27 |
+
)
|
28 |
+
|
29 |
+
duckduck_search_tool = Tool(
|
30 |
+
name="DuckDuckGoSearch",
|
31 |
+
func=DuckDuckGoSearchRun().run,
|
32 |
+
description="Search information using DuckDuckGo."
|
33 |
+
)
|
34 |
+
|
35 |
+
serper_tool = Tool(
|
36 |
+
name="GoogleSerperSearch",
|
37 |
+
func=GoogleSerperAPIWrapper(max_results=5).run,
|
38 |
+
description="Perform searches using Google Serper API."
|
39 |
+
)
|
40 |
+
|
41 |
+
tavily_tool_wrapped = Tool(
|
42 |
+
name="TavilySearch",
|
43 |
+
func=tavily_tool.run,
|
44 |
+
description="Retrieve search results from Tavily API."
|
45 |
+
)
|
46 |
+
|
47 |
+
# Define reusable function for agent creation
|
48 |
+
def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
|
49 |
+
prompt = ChatPromptTemplate.from_messages(
|
50 |
+
[
|
51 |
+
("system", system_prompt),
|
52 |
+
MessagesPlaceholder(variable_name="messages"),
|
53 |
+
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
54 |
+
]
|
55 |
+
)
|
56 |
+
agent = create_openai_tools_agent(llm, tools, prompt)
|
57 |
+
executor = AgentExecutor(agent=agent, tools=tools)
|
58 |
+
return executor
|
59 |
+
|
60 |
+
|
61 |
+
# Define agents
|
62 |
+
def get_agents():
|
63 |
+
cto_agent = create_agent(
|
64 |
+
llm,
|
65 |
+
[duckduck_search_tool],
|
66 |
+
"You are a CTO name finder. Extract the CTO's name from the provided company data."
|
67 |
+
)
|
68 |
+
|
69 |
+
glassdoor_agent = create_agent(
|
70 |
+
llm,
|
71 |
+
[tavily_tool_wrapped, serper_tool],
|
72 |
+
"You are a Glassdoor review scraper. Retrieve reviews about the given company. "
|
73 |
+
"Consider points like Overall Rating, Compensation, Senior Management, Career Opportunities."
|
74 |
+
"Provide stars for each point."
|
75 |
+
"Always scrap the same data"
|
76 |
+
)
|
77 |
+
|
78 |
+
competitor_agent = create_agent(
|
79 |
+
llm,
|
80 |
+
[tavily_tool_wrapped, serper_tool],
|
81 |
+
"You are a competitor finder. Provide details such as a description of competitors and their primary differences."
|
82 |
+
"Output the results in a table format."
|
83 |
+
)
|
84 |
+
|
85 |
+
information_agent = create_agent(
|
86 |
+
llm,
|
87 |
+
[search_google_tool, duckduck_search_tool, serper_tool],
|
88 |
+
"You are an information collector. Retrieve details such as Website, Sector, Industry, Location, Employees, Founding Year, and LinkedIn URL."
|
89 |
+
"Linkedin URL will be always like this https://www.linkedin.com/company/company_name"
|
90 |
+
)
|
91 |
+
|
92 |
+
return cto_agent, glassdoor_agent, competitor_agent, information_agent
|
93 |
+
|
94 |
+
|
95 |
+
# Streamlit App
|
96 |
+
def main():
|
97 |
+
st.title("Company Insights API")
|
98 |
+
st.write("Enter a company name to fetch details about its CTO, competitors, Glassdoor reviews, and general information.")
|
99 |
+
|
100 |
+
# Input for company name
|
101 |
+
company_name = st.text_input("Enter company name")
|
102 |
+
run_queries = st.button("Run Queries")
|
103 |
+
|
104 |
+
if run_queries:
|
105 |
+
# Prepare agents
|
106 |
+
cto_agent, glassdoor_agent, competitor_agent, information_agent = get_agents()
|
107 |
+
|
108 |
+
# Queries
|
109 |
+
queries = {
|
110 |
+
"CTO": f"Who is the CTO of {company_name}?",
|
111 |
+
"Glassdoor Reviews": f"What are the Glassdoor reviews of {company_name}?",
|
112 |
+
"Competitors": f"What are the competitors of {company_name}?",
|
113 |
+
"Information": f"Give me all information about {company_name}.",
|
114 |
+
}
|
115 |
+
|
116 |
+
results = {}
|
117 |
+
for query_name, query in queries.items():
|
118 |
+
agent = {
|
119 |
+
"CTO": cto_agent,
|
120 |
+
"Glassdoor Reviews": glassdoor_agent,
|
121 |
+
"Competitors": competitor_agent,
|
122 |
+
"Information": information_agent,
|
123 |
+
}[query_name]
|
124 |
+
|
125 |
+
state = {
|
126 |
+
"messages": [HumanMessage(content=query)]
|
127 |
+
}
|
128 |
+
|
129 |
+
try:
|
130 |
+
response = agent.invoke(state)
|
131 |
+
results[query_name] = response.get("output", "No response")
|
132 |
+
except Exception as e:
|
133 |
+
results[query_name] = f"Error: {e}"
|
134 |
+
|
135 |
+
# Display results
|
136 |
+
for query_name, result in results.items():
|
137 |
+
st.subheader(query_name)
|
138 |
+
st.write(result)
|
139 |
+
|
140 |
+
|
141 |
+
if __name__ == "__main__":
|
142 |
+
main()
|