MiVOLO / mivolo /data /data_reader.py
admin
sync
319d3b5
raw
history blame
4.28 kB
import os
from collections import defaultdict
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Tuple
import pandas as pd
IMAGES_EXT: Tuple = (".jpeg", ".jpg", ".png", ".webp", ".bmp", ".gif")
VIDEO_EXT: Tuple = (".mp4", ".avi", ".mov", ".mkv", ".webm")
@dataclass
class PictureInfo:
image_path: str
age: Optional[str] # age or age range(start;end format) or "-1"
gender: Optional[str] # "M" of "F" or "-1"
bbox: List[int] = field(default_factory=lambda: [-1, -1, -1, -1]) # face bbox: xyxy
person_bbox: List[int] = field(default_factory=lambda: [-1, -1, -1, -1]) # person bbox: xyxy
@property
def has_person_bbox(self) -> bool:
return any(coord != -1 for coord in self.person_bbox)
@property
def has_face_bbox(self) -> bool:
return any(coord != -1 for coord in self.bbox)
def has_gt(self, only_age: bool = False) -> bool:
if only_age:
return self.age != "-1"
else:
return not (self.age == "-1" and self.gender == "-1")
def clear_person_bbox(self):
self.person_bbox = [-1, -1, -1, -1]
def clear_face_bbox(self):
self.bbox = [-1, -1, -1, -1]
class AnnotType(Enum):
ORIGINAL = "original"
PERSONS = "persons"
NONE = "none"
@classmethod
def _missing_(cls, value):
print(f"WARN: Unknown annotation type {value}.")
return AnnotType.NONE
def get_all_files(path: str, extensions: Tuple = IMAGES_EXT):
files_all = []
for root, subFolders, files in os.walk(path):
for name in files:
# linux tricks with .directory that still is file
if "directory" not in name and sum([ext.lower() in name.lower() for ext in extensions]) > 0:
files_all.append(os.path.join(root, name))
return files_all
class InputType(Enum):
Image = 0
Video = 1
VideoStream = 2
def get_input_type(input_path: str) -> InputType:
if os.path.isdir(input_path):
print("Input is a folder, only images will be processed")
return InputType.Image
elif os.path.isfile(input_path):
if input_path.endswith(VIDEO_EXT):
return InputType.Video
if input_path.endswith(IMAGES_EXT):
return InputType.Image
else:
raise ValueError(
f"Unknown or unsupported input file format {input_path}, \
supported video formats: {VIDEO_EXT}, \
supported image formats: {IMAGES_EXT}"
)
elif input_path.startswith("http") and not input_path.endswith(IMAGES_EXT):
return InputType.VideoStream
else:
raise ValueError(f"Unknown input {input_path}")
def read_csv_annotation_file(annotation_file: str, images_dir: str, ignore_without_gt=False):
bboxes_per_image: Dict[str, List[PictureInfo]] = defaultdict(list)
df = pd.read_csv(annotation_file, sep=",")
annot_type = AnnotType("persons") if "person_x0" in df.columns else AnnotType("original")
print(f"Reading {annotation_file} (type: {annot_type})...")
missing_images = 0
for index, row in df.iterrows():
img_path = os.path.join(images_dir, row["img_name"])
if not os.path.exists(img_path):
missing_images += 1
continue
face_x1, face_y1, face_x2, face_y2 = row["face_x0"], row["face_y0"], row["face_x1"], row["face_y1"]
age, gender = str(row["age"]), str(row["gender"])
if ignore_without_gt and (age == "-1" or gender == "-1"):
continue
if annot_type == AnnotType.PERSONS:
p_x1, p_y1, p_x2, p_y2 = row["person_x0"], row["person_y0"], row["person_x1"], row["person_y1"]
person_bbox = list(map(int, [p_x1, p_y1, p_x2, p_y2]))
else:
person_bbox = [-1, -1, -1, -1]
bbox = list(map(int, [face_x1, face_y1, face_x2, face_y2]))
pic_info = PictureInfo(img_path, age, gender, bbox, person_bbox)
assert isinstance(pic_info.person_bbox, list)
bboxes_per_image[img_path].append(pic_info)
if missing_images > 0:
print(f"WARNING: Missing images: {missing_images}/{len(df)}")
return bboxes_per_image, annot_type