File size: 19,907 Bytes
319d3b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import math
import os
from copy import deepcopy
from typing import Dict, List, Optional, Tuple
import cv2
import numpy as np
import torch
from mivolo.data.misc import aggregate_votes_winsorized, assign_faces, box_iou, cropout_black_parts
from ultralytics.engine.results import Results
from ultralytics.utils.plotting import Annotator, colors
# because of ultralytics bug it is important to unset CUBLAS_WORKSPACE_CONFIG after the module importing
os.unsetenv("CUBLAS_WORKSPACE_CONFIG")
AGE_GENDER_TYPE = Tuple[float, str]
class PersonAndFaceCrops:
def __init__(self):
# int: index of person along results
self.crops_persons: Dict[int, np.ndarray] = {}
# int: index of face along results
self.crops_faces: Dict[int, np.ndarray] = {}
# int: index of face along results
self.crops_faces_wo_body: Dict[int, np.ndarray] = {}
# int: index of person along results
self.crops_persons_wo_face: Dict[int, np.ndarray] = {}
def _add_to_output(
self, crops: Dict[int, np.ndarray], out_crops: List[np.ndarray], out_crop_inds: List[Optional[int]]
):
inds_to_add = list(crops.keys())
crops_to_add = list(crops.values())
out_crops.extend(crops_to_add)
out_crop_inds.extend(inds_to_add)
def _get_all_faces(
self, use_persons: bool, use_faces: bool
) -> Tuple[List[Optional[int]], List[Optional[np.ndarray]]]:
"""
Returns
if use_persons and use_faces
faces: faces_with_bodies + faces_without_bodies + [None] * len(crops_persons_wo_face)
if use_persons and not use_faces
faces: [None] * n_persons
if not use_persons and use_faces:
faces: faces_with_bodies + faces_without_bodies
"""
def add_none_to_output(faces_inds, faces_crops, num):
faces_inds.extend([None for _ in range(num)])
faces_crops.extend([None for _ in range(num)])
faces_inds: List[Optional[int]] = []
faces_crops: List[Optional[np.ndarray]] = []
if not use_faces:
add_none_to_output(faces_inds, faces_crops, len(
self.crops_persons) + len(self.crops_persons_wo_face))
return faces_inds, faces_crops
self._add_to_output(self.crops_faces, faces_crops, faces_inds)
self._add_to_output(self.crops_faces_wo_body, faces_crops, faces_inds)
if use_persons:
add_none_to_output(faces_inds, faces_crops,
len(self.crops_persons_wo_face))
return faces_inds, faces_crops
def _get_all_bodies(
self, use_persons: bool, use_faces: bool
) -> Tuple[List[Optional[int]], List[Optional[np.ndarray]]]:
"""
Returns
if use_persons and use_faces
persons: bodies_with_faces + [None] * len(faces_without_bodies) + bodies_without_faces
if use_persons and not use_faces
persons: bodies_with_faces + bodies_without_faces
if not use_persons and use_faces
persons: [None] * n_faces
"""
def add_none_to_output(bodies_inds, bodies_crops, num):
bodies_inds.extend([None for _ in range(num)])
bodies_crops.extend([None for _ in range(num)])
bodies_inds: List[Optional[int]] = []
bodies_crops: List[Optional[np.ndarray]] = []
if not use_persons:
add_none_to_output(bodies_inds, bodies_crops, len(
self.crops_faces) + len(self.crops_faces_wo_body))
return bodies_inds, bodies_crops
self._add_to_output(self.crops_persons, bodies_crops, bodies_inds)
if use_faces:
add_none_to_output(bodies_inds, bodies_crops,
len(self.crops_faces_wo_body))
self._add_to_output(self.crops_persons_wo_face,
bodies_crops, bodies_inds)
return bodies_inds, bodies_crops
def get_faces_with_bodies(self, use_persons: bool, use_faces: bool):
"""
Return
faces: faces_with_bodies, faces_without_bodies, [None] * len(crops_persons_wo_face)
persons: bodies_with_faces, [None] * len(faces_without_bodies), bodies_without_faces
"""
bodies_inds, bodies_crops = self._get_all_bodies(
use_persons, use_faces)
faces_inds, faces_crops = self._get_all_faces(use_persons, use_faces)
return (bodies_inds, bodies_crops), (faces_inds, faces_crops)
def save(self, out_dir="output"):
ind = 0
os.makedirs(out_dir, exist_ok=True)
for crops in [self.crops_persons, self.crops_faces, self.crops_faces_wo_body, self.crops_persons_wo_face]:
for crop in crops.values():
if crop is None:
continue
out_name = os.path.join(out_dir, f"{ind}_crop.jpg")
cv2.imwrite(out_name, crop)
ind += 1
class PersonAndFaceResult:
def __init__(self, results: Results):
self.yolo_results = results
names = set(results.names.values())
assert "person" in names and "face" in names
# initially no faces and persons are associated to each other
self.face_to_person_map: Dict[int, Optional[int]] = {
ind: None for ind in self.get_bboxes_inds("face")}
self.unassigned_persons_inds: List[int] = self.get_bboxes_inds(
"person")
n_objects = len(self.yolo_results.boxes)
self.ages: List[Optional[float]] = [None for _ in range(n_objects)]
self.genders: List[Optional[str]] = [None for _ in range(n_objects)]
self.gender_scores: List[Optional[float]] = [
None for _ in range(n_objects)]
@property
def n_objects(self) -> int:
return len(self.yolo_results.boxes)
def get_bboxes_inds(self, category: str) -> List[int]:
bboxes: List[int] = []
for ind, det in enumerate(self.yolo_results.boxes):
name = self.yolo_results.names[int(det.cls)]
if name == category:
bboxes.append(ind)
return bboxes
def get_distance_to_center(self, bbox_ind: int) -> float:
"""
Calculate euclidian distance between bbox center and image center.
"""
im_h, im_w = self.yolo_results[bbox_ind].orig_shape
x1, y1, x2, y2 = self.get_bbox_by_ind(bbox_ind).cpu().numpy()
center_x, center_y = (x1 + x2) / 2, (y1 + y2) / 2
dist = math.dist([center_x, center_y], [im_w / 2, im_h / 2])
return dist
def plot(
self,
conf=False,
line_width=None,
font_size=None,
font="Arial.ttf",
pil=False,
img=None,
labels=True,
boxes=True,
probs=True,
ages=True,
genders=True,
gender_probs=False,
):
"""
Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image.
Args:
conf (bool): Whether to plot the detection confidence score.
line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size.
font_size (float, optional): The font size of the text. If None, it is scaled to the image size.
font (str): The font to use for the text.
pil (bool): Whether to return the image as a PIL Image.
img (numpy.ndarray): Plot to another image. if not, plot to original image.
labels (bool): Whether to plot the label of bounding boxes.
boxes (bool): Whether to plot the bounding boxes.
probs (bool): Whether to plot classification probability
ages (bool): Whether to plot the age of bounding boxes.
genders (bool): Whether to plot the genders of bounding boxes.
gender_probs (bool): Whether to plot gender classification probability
Returns:
(numpy.ndarray): A numpy array of the annotated image.
"""
# return self.yolo_results.plot()
colors_by_ind = {}
for face_ind, person_ind in self.face_to_person_map.items():
if person_ind is not None:
colors_by_ind[face_ind] = face_ind + 2
colors_by_ind[person_ind] = face_ind + 2
else:
colors_by_ind[face_ind] = 0
for person_ind in self.unassigned_persons_inds:
colors_by_ind[person_ind] = 1
names = self.yolo_results.names
annotator = Annotator(
deepcopy(self.yolo_results.orig_img if img is None else img),
line_width,
font_size,
font,
pil,
example=names,
)
pred_boxes, show_boxes = self.yolo_results.boxes, boxes
pred_probs, show_probs = self.yolo_results.probs, probs
if pred_boxes and show_boxes:
for bb_ind, (d, age, gender, gender_score) in enumerate(
zip(pred_boxes, self.ages, self.genders, self.gender_scores)
):
c, conf, guid = int(d.cls), float(
d.conf) if conf else None, None if d.id is None else int(d.id.item())
name = ("" if guid is None else f"id:{guid} ") + names[c]
label = (
f"{name} {conf:.2f}" if conf else name) if labels else None
if ages and age is not None:
label += f" {age:.1f}"
if genders and gender is not None:
label += f" {'F' if gender == 'female' else 'M'}"
if gender_probs and gender_score is not None:
label += f" ({gender_score:.1f})"
annotator.box_label(d.xyxy.squeeze(), label,
color=colors(colors_by_ind[bb_ind], True))
if pred_probs is not None and show_probs:
text = f"{', '.join(f'{names[j] if names else j} {pred_probs.data[j]:.2f}' for j in pred_probs.top5)}, "
annotator.text((32, 32), text, txt_color=(
255, 255, 255)) # TODO: allow setting colors
return annotator.result()
def set_tracked_age_gender(self, tracked_objects: Dict[int, List[AGE_GENDER_TYPE]]):
"""
Update age and gender for objects based on history from tracked_objects.
Args:
tracked_objects (dict[int, list[AGE_GENDER_TYPE]]): info about tracked objects by guid
"""
for face_ind, person_ind in self.face_to_person_map.items():
pguid = self._get_id_by_ind(person_ind)
fguid = self._get_id_by_ind(face_ind)
if fguid == -1 and pguid == -1:
# YOLO might not assign ids for some objects in some cases:
# https://github.com/ultralytics/ultralytics/issues/3830
continue
age, gender = self._gather_tracking_result(
tracked_objects, fguid, pguid)
if age is None or gender is None:
continue
self.set_age(face_ind, age)
self.set_gender(face_ind, gender, 1.0)
if pguid != -1:
self.set_gender(person_ind, gender, 1.0)
self.set_age(person_ind, age)
for person_ind in self.unassigned_persons_inds:
pid = self._get_id_by_ind(person_ind)
if pid == -1:
continue
age, gender = self._gather_tracking_result(
tracked_objects, -1, pid)
if age is None or gender is None:
continue
self.set_gender(person_ind, gender, 1.0)
self.set_age(person_ind, age)
def _get_id_by_ind(self, ind: Optional[int] = None) -> int:
if ind is None:
return -1
obj_id = self.yolo_results.boxes[ind].id
if obj_id is None:
return -1
return obj_id.item()
def get_bbox_by_ind(self, ind: int, im_h: int = None, im_w: int = None) -> torch.tensor:
bb = self.yolo_results.boxes[ind].xyxy.squeeze().type(torch.int32)
if im_h is not None and im_w is not None:
bb[0] = torch.clamp(bb[0], min=0, max=im_w - 1)
bb[1] = torch.clamp(bb[1], min=0, max=im_h - 1)
bb[2] = torch.clamp(bb[2], min=0, max=im_w - 1)
bb[3] = torch.clamp(bb[3], min=0, max=im_h - 1)
return bb
def set_age(self, ind: Optional[int], age: float):
if ind is not None:
self.ages[ind] = age
def set_gender(self, ind: Optional[int], gender: str, gender_score: float):
if ind is not None:
self.genders[ind] = gender
self.gender_scores[ind] = gender_score
@staticmethod
def _gather_tracking_result(
tracked_objects: Dict[int, List[AGE_GENDER_TYPE]],
fguid: int = -1,
pguid: int = -1,
minimum_sample_size: int = 10,
) -> AGE_GENDER_TYPE:
assert fguid != -1 or pguid != -1, "Incorrect tracking behaviour"
face_ages = [r[0] for r in tracked_objects[fguid] if r[0]
is not None] if fguid in tracked_objects else []
face_genders = [r[1] for r in tracked_objects[fguid]
if r[1] is not None] if fguid in tracked_objects else []
person_ages = [r[0] for r in tracked_objects[pguid]
if r[0] is not None] if pguid in tracked_objects else []
person_genders = [r[1] for r in tracked_objects[pguid]
if r[1] is not None] if pguid in tracked_objects else []
if not face_ages and not person_ages: # both empty
return None, None
# You can play here with different aggregation strategies
# Face ages - predictions based on face or face + person, depends on history of object
# Person ages - predictions based on person or face + person, depends on history of object
if len(person_ages + face_ages) >= minimum_sample_size:
age = aggregate_votes_winsorized(person_ages + face_ages)
else:
face_age = np.mean(face_ages) if face_ages else None
person_age = np.mean(person_ages) if person_ages else None
if face_age is None:
face_age = person_age
if person_age is None:
person_age = face_age
age = (face_age + person_age) / 2.0
genders = face_genders + person_genders
assert len(genders) > 0
# take mode of genders
gender = max(set(genders), key=genders.count)
return age, gender
def get_results_for_tracking(self) -> Tuple[Dict[int, AGE_GENDER_TYPE], Dict[int, AGE_GENDER_TYPE]]:
"""
Get objects from current frame
"""
persons: Dict[int, AGE_GENDER_TYPE] = {}
faces: Dict[int, AGE_GENDER_TYPE] = {}
names = self.yolo_results.names
pred_boxes = self.yolo_results.boxes
for _, (det, age, gender, _) in enumerate(zip(pred_boxes, self.ages, self.genders, self.gender_scores)):
if det.id is None:
continue
cat_id, _, guid = int(det.cls), float(det.conf), int(det.id.item())
name = names[cat_id]
if name == "person":
persons[guid] = (age, gender)
elif name == "face":
faces[guid] = (age, gender)
return persons, faces
def associate_faces_with_persons(self):
face_bboxes_inds: List[int] = self.get_bboxes_inds("face")
person_bboxes_inds: List[int] = self.get_bboxes_inds("person")
face_bboxes: List[torch.tensor] = [
self.get_bbox_by_ind(ind) for ind in face_bboxes_inds]
person_bboxes: List[torch.tensor] = [
self.get_bbox_by_ind(ind) for ind in person_bboxes_inds]
self.face_to_person_map = {ind: None for ind in face_bboxes_inds}
assigned_faces, unassigned_persons_inds = assign_faces(
person_bboxes, face_bboxes)
for face_ind, person_ind in enumerate(assigned_faces):
face_ind = face_bboxes_inds[face_ind]
person_ind = person_bboxes_inds[person_ind] if person_ind is not None else None
self.face_to_person_map[face_ind] = person_ind
self.unassigned_persons_inds = [
person_bboxes_inds[person_ind] for person_ind in unassigned_persons_inds]
def crop_object(
self, full_image: np.ndarray, ind: int, cut_other_classes: Optional[List[str]] = None
) -> Optional[np.ndarray]:
IOU_THRESH = 0.000001
MIN_PERSON_CROP_AFTERCUT_RATIO = 0.4
CROP_ROUND_RATE = 0.3
MIN_PERSON_SIZE = 50
obj_bbox = self.get_bbox_by_ind(ind, *full_image.shape[:2])
x1, y1, x2, y2 = obj_bbox
cur_cat = self.yolo_results.names[int(
self.yolo_results.boxes[ind].cls)]
# get crop of face or person
obj_image = full_image[y1:y2, x1:x2].copy()
crop_h, crop_w = obj_image.shape[:2]
if cur_cat == "person" and (crop_h < MIN_PERSON_SIZE or crop_w < MIN_PERSON_SIZE):
return None
if not cut_other_classes:
return obj_image
# calc iou between obj_bbox and other bboxes
other_bboxes: List[torch.tensor] = [
self.get_bbox_by_ind(other_ind, *full_image.shape[:2]) for other_ind in range(len(self.yolo_results.boxes))
]
iou_matrix = box_iou(torch.stack([obj_bbox]), torch.stack(
other_bboxes)).cpu().numpy()[0]
# cut out other objects in case of intersection
for other_ind, (det, iou) in enumerate(zip(self.yolo_results.boxes, iou_matrix)):
other_cat = self.yolo_results.names[int(det.cls)]
if ind == other_ind or iou < IOU_THRESH or other_cat not in cut_other_classes:
continue
o_x1, o_y1, o_x2, o_y2 = det.xyxy.squeeze().type(torch.int32)
# remap current_person_bbox to reference_person_bbox coordinates
o_x1 = max(o_x1 - x1, 0)
o_y1 = max(o_y1 - y1, 0)
o_x2 = min(o_x2 - x1, crop_w)
o_y2 = min(o_y2 - y1, crop_h)
if other_cat != "face":
if (o_y1 / crop_h) < CROP_ROUND_RATE:
o_y1 = 0
if ((crop_h - o_y2) / crop_h) < CROP_ROUND_RATE:
o_y2 = crop_h
if (o_x1 / crop_w) < CROP_ROUND_RATE:
o_x1 = 0
if ((crop_w - o_x2) / crop_w) < CROP_ROUND_RATE:
o_x2 = crop_w
obj_image[o_y1:o_y2, o_x1:o_x2] = 0
obj_image, remain_ratio = cropout_black_parts(
obj_image, CROP_ROUND_RATE)
if remain_ratio < MIN_PERSON_CROP_AFTERCUT_RATIO:
return None
return obj_image
def collect_crops(self, image) -> PersonAndFaceCrops:
crops_data = PersonAndFaceCrops()
for face_ind, person_ind in self.face_to_person_map.items():
face_image = self.crop_object(
image, face_ind, cut_other_classes=[])
if person_ind is None:
crops_data.crops_faces_wo_body[face_ind] = face_image
continue
person_image = self.crop_object(
image, person_ind, cut_other_classes=["face", "person"])
crops_data.crops_faces[face_ind] = face_image
crops_data.crops_persons[person_ind] = person_image
for person_ind in self.unassigned_persons_inds:
person_image = self.crop_object(
image, person_ind, cut_other_classes=["face", "person"])
crops_data.crops_persons_wo_face[person_ind] = person_image
# uncomment to save preprocessed crops
# crops_data.save()
return crops_data
|