File size: 1,786 Bytes
c127950
0897689
c127950
 
0897689
 
 
 
 
 
 
 
 
 
 
 
4806750
0897689
 
 
 
 
 
 
 
 
4806750
0897689
df2a868
0897689
 
 
 
b25c66c
 
0897689
 
 
b25c66c
 
 
 
c127950
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import gradio as gr
from huggingface_hub import InferenceClient


def client_fn(model):
    if "Mixtral" in model:
        return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
    elif "Llama" in model:
        return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
    elif "Mistral" in model:
        return InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
    elif "Phi" in model:
        return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
    else: 
        return InferenceClient("microsoft/Phi-3-mini-4k-instruct")

system_instructions1 = "[SYSTEM] Your task is to Answer the question. Keep conversation very short, clear and concise. The expectation is that you will avoid introductions and start answering the query directly, Only answer the question asked by user, Do not say unnecessary things.[QUESTION]"

def models(text, model="Mixtral 8x7B"): 
    
    client = client_fn(model)
    
    generate_kwargs = dict(
        max_new_tokens=300,
    )
    
    formatted_prompt = system_instructions1 + text + "[ANSWER]"
    stream = client.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        if not response.token.text == "</s>":
            output += response.token.text
                if not response.token.text == "<|assistant|>":
                    output += response.token.text

    return output

description="""# Chat GO
### Inspired from Goggle Go"""

demo = gr.Interface(description=description,fn=models, inputs=["text", gr.Dropdown([ 'Mixtral 8x7B','Llama 3 8B','Mistral 7B v0.3','Phi 3 mini', ], value="Mistral 7B v0.3", label="Select Model") ], outputs="text", live=True, batch=True, max_batch_size=1000)
demo.launch()