Spaces:
Running
on
Zero
Running
on
Zero
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import shutil | |
import pdb | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig | |
import torch | |
CONTROLLER_HEART_BEAT_EXPIRATION = 30 | |
WORKER_HEART_BEAT_INTERVAL = 15 | |
LOGDIR = "." | |
# Model Constants | |
IGNORE_INDEX = -100 | |
IMAGE_TOKEN_INDEX = -200 | |
DEFAULT_IMAGE_TOKEN = "<image>" | |
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" | |
DEFAULT_IM_START_TOKEN = "<im_start>" | |
DEFAULT_IM_END_TOKEN = "<im_end>" | |
IMAGE_PLACEHOLDER = "<image-placeholder>" | |
# Added by Ferret | |
DEFAULT_REGION_FEA_TOKEN = "<region_fea>" | |
VOCAB_IMAGE_W = 1000 | |
VOCAB_IMAGE_H = 1000 | |
# GROUNDING PROMPTS | |
GROUNDING_TEMPLATES = [ | |
'\nProvide the bounding boxes of the mentioned objects.', | |
'\nInclude the coordinates for each mentioned object.', | |
'\nLocate the objects with their coordinates.', | |
'\nAnswer in [x1, y1, x2, y2] format.', | |
'\nMention the objects and their locations using the format [x1, y1, x2, y2].', | |
'\nDraw boxes around the mentioned objects.', | |
'\nUse boxes to show where each thing is.', | |
'\nTell me where the objects are with coordinates.', | |
'\nList where each object is with boxes.', | |
'\nShow me the regions with boxes.' | |
] | |
DEFAULT_REGION_FEA_TOKEN = "<region_fea>" | |
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto"): | |
kwargs = {"device_map": device_map} | |
if load_8bit: | |
kwargs['load_in_8bit'] = True | |
elif load_4bit: | |
kwargs['load_in_4bit'] = True | |
kwargs['quantization_config'] = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type='nf4' | |
) | |
else: | |
kwargs['torch_dtype'] = torch.float16 | |
if 'llava' in model_name.lower() or 'ferret' in model_name.lower(): | |
# Load LLaVA/FERRET model | |
if 'lora' in model_name.lower() and model_base is not None: | |
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, trust_remote_code=True) | |
print('Loading LLaVA/FERRET from base model...') | |
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs, trust_remote_code=True) | |
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features | |
if model.lm_head.weight.shape[0] != token_num: | |
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) | |
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) | |
print('Loading additional LLaVA/FERRET weights...') | |
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): | |
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') | |
else: | |
# this is probably from HF Hub | |
from huggingface_hub import hf_hub_download | |
def load_from_hf(repo_id, filename, subfolder=None): | |
cache_file = hf_hub_download( | |
repo_id=repo_id, | |
filename=filename, | |
subfolder=subfolder) | |
return torch.load(cache_file, map_location='cpu') | |
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') | |
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} | |
if any(k.startswith('model.model.') for k in non_lora_trainables): | |
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} | |
model.load_state_dict(non_lora_trainables, strict=False) | |
from peft import PeftModel | |
print('Loading LoRA weights...') | |
model = PeftModel.from_pretrained(model, model_path, trust_remote_code=True) | |
print('Merging LoRA weights...') | |
model = model.merge_and_unload() | |
print('Model is loaded...') | |
elif model_base is not None: | |
# this may be mm projector only | |
print('Loading LLaVA/FERRET from base model...') | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs, trust_remote_code=True) | |
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu') | |
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} | |
model.load_state_dict(mm_projector_weights, strict=False) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs, trust_remote_code=True) | |
else: | |
# Load language model | |
if model_base is not None: | |
# PEFT model | |
from peft import PeftModel | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto", trust_remote_code=True) | |
print(f"Loading LoRA weights from {model_path}") | |
model = PeftModel.from_pretrained(model, model_path, trust_remote_code=True) | |
print(f"Merging weights") | |
model = model.merge_and_unload() | |
print('Convert to FP16...') | |
model.to(torch.float16) | |
else: | |
use_fast = False | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs, trust_remote_code=True) | |
image_processor = None | |
if 'llava' in model_name.lower() or 'ferret' in model_name.lower(): | |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) | |
mm_im_region_fea_token = getattr(model.config, "im_region_fea_token", None) | |
if mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
if mm_im_region_fea_token is not None: | |
tokenizer.add_tokens([DEFAULT_REGION_FEA_TOKEN], special_tokens=True) | |
if mm_use_im_start_end: | |
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) | |
model.resize_token_embeddings(len(tokenizer)) | |
vision_tower = model.get_vision_tower() | |
vision_tower_path = os.path.join(model_path, 'vision_tower') | |
if not vision_tower.is_loaded or os.path.exists(vision_tower_path): | |
if os.path.exists(vision_tower_path): | |
print(f'Start Loading vision tower from {vision_tower_path}') | |
vision_tower.load_model(vision_tower_path=vision_tower_path) | |
print(f'Finish Loading vision tower from {vision_tower_path}') | |
else: | |
vision_tower.load_model() | |
vision_tower.to(device='cuda', dtype=torch.float16) | |
image_processor = vision_tower.image_processor | |
if hasattr(model.config, "max_sequence_length"): | |
context_len = model.config.max_sequence_length | |
else: | |
context_len = 2048 | |
return tokenizer, model, image_processor, context_len | |