Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,820 Bytes
1342b13 714db0a 1342b13 151137d 4e961a2 1342b13 151137d 714db0a 1342b13 4e961a2 e3feb3f 151137d 4e961a2 151137d 4e961a2 151137d 4e961a2 714db0a 1342b13 4e961a2 3bdab0b 4e961a2 151137d 4e961a2 151137d 4e961a2 3bdab0b ee59173 3bdab0b 1342b13 151137d 4e961a2 151137d 4e961a2 3bdab0b 4e961a2 3bdab0b 4e961a2 ee59173 4e961a2 151137d 4e961a2 151137d 4e961a2 151137d 4e961a2 151137d 4e961a2 151137d 4e961a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
from inference import inference_and_run
import spaces
import os
import shutil
from PIL import Image
from gradio_image_prompter import ImagePrompter
model_name = 'Ferret-UI'
cur_dir = os.path.dirname(os.path.abspath(__file__))
@spaces.GPU()
def inference_with_gradio(chatbot, image_data, prompt, model_path, temperature=0.2, top_p=0.7, max_new_tokens=512):
if image_data is None:
raise gr.Error("Please upload an image and draw a bounding box if needed.")
# Handle the image and bounding box data
image = image_data["image"]
box = None
if "points" in image_data and image_data["points"] and len(image_data["points"]) > 0:
points = image_data["points"][0]
# Convert points to [x1, y1, x2, y2] format
box = f"{points[0]}, {points[1]}, {points[3]}, {points[4]}"
# Convert numpy array to a PIL Image
pil_image = Image.fromarray(image)
# Save the image
filename = "temp_image.png"
dir_path = "./"
image_path = os.path.join(dir_path, filename)
pil_image.save(image_path) # Save the PIL image to the file system
if "gemma" in model_path.lower():
conv_mode = "ferret_gemma_instruct"
else:
conv_mode = "ferret_llama_3"
print("the box: ", box)
# Call the main inference function with the model and mask (if applicable)
inference_text = inference_and_run(
image_path=filename,
image_dir=dir_path,
prompt=prompt,
model_path=model_path,
conv_mode=conv_mode,
temperature=temperature,
top_p=top_p,
box=box,
max_new_tokens=max_new_tokens,
)
if isinstance(inference_text, (list, tuple)):
inference_text = str(inference_text[0])
# Update chatbot history
new_history = chatbot.copy() if chatbot else []
new_history.append((prompt, inference_text))
return new_history
def submit_chat(chatbot, text_input):
return chatbot, ''
def clear_chat():
return [], None, "", 0.2, 0.7, 512
html = f"""
<div style="text-align: center; padding: 20px;">
<div style="display: inline-block; background-color: #f5f5f7; padding: 20px; border-radius: 20px; box-shadow: 0px 6px 20px rgba(0, 0, 0, 0.1);">
<div style="display: flex; align-items: center;">
<img src='https://github.com/apple/ml-ferret/blob/main/ferretui/figs/ferretui_icon.png?raw=true' alt='Ferret-UI'
style='width: 80px; height: 80px; border-radius: 20px; box-shadow: 0px 8px 16px rgba(0, 0, 0, 0.2);'/>
<div style="margin-left: 15px;">
<h1 style="font-size: 2.8em; font-family: -apple-system, BlinkMacSystemFont, sans-serif; color: #1D1D1F;
font-weight: bold; margin-bottom: 0;"> {model_name}</h1>
<p style="font-size: 1.2em; color: #6e6e73; font-family: -apple-system, BlinkMacSystemFont, sans-serif; margin-top: 5px;">
📱 Grounded Mobile UI Understanding with Multimodal LLMs.<br>
A new MLLM tailored for enhanced understanding of mobile UI screens, equipped with referring, grounding, and reasoning capabilities.
</p>
<a href='https://huggingface.co/jadechoghari/Ferret-UI-Gemma2b' style='text-decoration: none;'>
<button style="background-color: #007aff; color: white; font-size: 1.2em; padding: 10px 20px; border-radius: 10px; border: none; margin-top: 10px; box-shadow: 0px 4px 12px rgba(0, 122, 255, 0.4); cursor: pointer;">
🤗 Try on Hugging Face
</button>
</a>
</div>
</div>
</div>
<p style="font-size: 1.2em; color: #86868B; font-family: -apple-system, BlinkMacSystemFont, sans-serif; margin-top: 30px;">
We release two Ferret-UI checkpoints, built on gemma-2b and Llama-3-8B models respectively, for public exploration. 🚀
</p>
</div>
"""
latex_delimiters_set = [{
"left": "\\(",
"right": "\\)",
"display": False
}, {
"left": "\\begin{equation}",
"right": "\\end{equation}",
"display": True
}, {
"left": "\\begin{align}",
"right": "\\end{align}",
"display": True
}]
with gr.Blocks(title=model_name) as demo:
gr.HTML(html)
with gr.Row():
with gr.Column(scale=3):
# Replace image_input with ImagePrompter
image_input = ImagePrompter(label="Upload Image & Draw Bounding Box")
text_input = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
model_dropdown = gr.Dropdown(
choices=[
"jadechoghari/Ferret-UI-Gemma2b",
"jadechoghari/Ferret-UI-Llama8b",
],
label="Model Path",
value="jadechoghari/Ferret-UI-Gemma2b"
)
temperature_input = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.2, label="Temperature")
top_p_input = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.7, label="Top P")
max_new_tokens_input = gr.Slider(minimum=1, maximum=1024, step=1, value=512, label="Max New Tokens")
gr.Examples(
examples=[
[{"image": "appstore_reminders.png"}, "Describe the contents inside the box"],
[{"image": "appstore_reminders.png"}, "What is the text shown inside the highlighted area"]
],
inputs=[image_input, text_input],
label="Try these examples"
)
with gr.Column(scale=7):
chatbot = gr.Chatbot(
label="Chat with Ferret-UI",
height=400,
show_copy_button=True,
latex_delimiters=latex_delimiters_set,
type="tuples"
)
with gr.Row():
send_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
send_click_event = send_btn.click(
inference_with_gradio,
[chatbot, image_input, text_input, model_dropdown, temperature_input, top_p_input, max_new_tokens_input],
chatbot
).then(
submit_chat,
[chatbot, text_input],
[chatbot, text_input]
)
submit_event = text_input.submit(
inference_with_gradio,
[chatbot, image_input, text_input, model_dropdown, temperature_input, top_p_input, max_new_tokens_input],
chatbot
).then(
submit_chat,
[chatbot, text_input],
[chatbot, text_input]
)
clear_btn.click(
clear_chat,
outputs=[chatbot, image_input, text_input, temperature_input, top_p_input, max_new_tokens_input]
)
demo.launch()
|